27

Working with XML

If you need information on: See page:

Introduction to XML 1028

Documen

Chapter 27

Extensible Markup Language (XML) is a markup language based on simple, platform-independent rules for
processing and displaying textual information in a structured way. The platform-independent nature of XML
makes an XML document an ideal format for exchanging structured textual information among different
applications. In the recent years, XML has evolved as the de facto standard for document markup. Since its
advent, XML has been used to implement various operations, such as:

Configuration information

Publishing

Electronic Data Interchange (EDI)

Voicemail systems

Vector graphics

Remote Method Invocation (RMI)

Object serialization

XML provides customized tags to format and display textual information. What makes XML an integral element
of enterprise computing is that XML documents are simple text documents that represent data in a platform-
neutral manner. For example, an XML document generated by an application running on Microsoft Windows can
be easily consumed by an application running on Sun Solaris,

DCcooDCceoo

This chapter describes XML and its related specifications. It also describes how to write XML data, so that you can
become familiar with the XML syntax.

Introduction to XML

Markup Languages (MLs) such as SGML, HTML and Extensible Hypertext Markup Language (XHTML), are
used to format text. In early times, the set of instructions given to printers to print a page in a specified format
was called markup, and the language based on these instructions was called a Markup Language. This is how
the concept of MLs originated. These instructions were written in a format that was different from the main text
so that they would be easily differentiated from the main text. This format was later transformed in the form of
tags that are currently used with markup languages.

Introduced in 1969, Generalized Markup Language (GML) was the first markup language. GML usrd tags to
format text in a document. However, different documents created using GML required different compilers to
compile them. In addition, standards were not available for compiling the documents written in GML. This led
to the evolution of SGML. :

SGML, intreduced in 1986, is the markup language used to define another markup language. SGML allows you
to define and create documents that are platform independent and can be used to exchange data over a network.
Despite the advantages that SGML offers, developers felt a need for another markup language because the
authoring software used to create SGML documents was complex and expensive.

Unfortunately, SGML is such a complicated language that it is not well suited for data interchange over the web.
Another problem related with SGML is that it is computer-specific. Therefore, the developers felt a need for
another markup language, which is not computer-specific. This led to the evolution of HTML.

HTML was invented by Tim Berners-Lee in 1990. It is based on Tim’s own protocol, which is known as HTTP,
Although HTML is incredibly successful, it is also limited in its scope; it is only intended for displaying
documents in a browser. The tags it makes available do not provide any information about the content they
.. encompass, it only has instructions on how to display that content. This means that you could create an HTML
“document which displays information about a person, but you couldn't write a program to figure out from the
HTML document which piece of information relates to the person’s first name. In fact, that program would not
even know that the document was about a person at all, This led to the evolution of XML.

XML Basics

In this section, we’ll go through the basics of XML and understand what XMF. is all about, and how it is used.
Let’s know about the major components that make XML great for information storage and interchange. An XML,

1028

Working with XML

document contains many components, such as syntax, elements, attributes, and declarations. In this section,
we’ll cover the following components:

XML syntax
XML declaration
XML elements
XML attributes
Valid XML documents
\ Viewing XML
XML Parser
Document Type Definition
Parameter Entities and Conditional Sections

XML Syntax

Every XML document abides by some syntax rules that specify how a document is created. The declaration
statements or markup tags define the syntax for creating XML documents. The syntax used to create an XML
docurnent is called markup syntax. It is used to define the structure of data in the document. The following rules
are associated with the markup syntax:

COoCcCo0oO0O0oO0o

o

XML documents must have a starting tag and closing tag

XML tags are case-sensitive

XML elements must be properly nested

XML documents must have a Root Element and only one Root Element.
XML attributes values must be quoted

In XML, white space is preserved

Let’s consider an XML file as shown in the followmg code snippet:

OCoo0ooQOoOCo

In the precedmg code snippet, the document contains numerous starting and closing tags. These tags are case-
sensitive. It means if you write <FirstName> as a starting tag and close it with </firstname>, then it would
generate an error. In the code, given previously, all elements are properly nested. For example, consider the
followmg line of code:

; <hIr<u1><F1 FEENAMEAMDT] She/Firsthanes</ulx/hl> RN . Floie
In th.ls code line, the first tag is <h1> and the line closes with the same tag in the same order You cannot write
like this:

In this case, it will give an error.

XML Declaration
The XML declaration statement is used to indicate that the specified document is an XML document. Although it
is not required to have an XML declaration, it is considered a good practice to include it. If XML declaration
statement is present, then it will be the first line in the document which defines the XML version and character
enceding. An XML declaration looks like this:

S K e r i ET T 0T et el g T SO BRI Suida Tones yes My i Tien:

Chapter 27

Some important points to note about XML declaration are as follows:
O XML declaration starts with <? xml, and ends with 2 >

O If it is included then it must include the version attribute as it is required, but the encoding and
standalone attributes are optional

O The XML declaration must be at the beginning of the file
Q The version, encoding, and standalone attributes must be in that order

XML Elerents

An XML element is the basic syntactic construct of an XML document. You can say that the building blocks of
any XML document are its elements. A start tag and an end tag delimit an element in an XML document. An
example of an XML element is as follows:
<Employees></Employees> . . : :

A start tag within an element is delimited by the < and > characters and has a tag name. In the prevmus start tag,
the name is Employees. However, it is useful to keep in mind that a tag name must begin with a letter and can
contain hyphen (-} and underscore (_) characters. An end tag is delimited by the </ and > character sequences
and also contains a tag name. A document must have a single root element, which is also known as the
document element. If you assume that the Employees element is your root element, then your document would
be as follows:

el vengidans ' 1.

csmhyeesufm“ienas:r
Thl.s is an example of a well- formed XML document, where, of course, the XML declaration on the flrst lme is
optional; omitting the XML declaration would still leave you with a well-formed document.

However, there are some rules associated with elements. These rules are as follows:

0 Element names can start with letters or the underscore (_) character, but not numbers or other punctuation
characters.

O After the first character, numbers are allowed, as are the characters — and . .

O Element names cannot contain spaces.

U Element names can’t contain the : character. Strictly speaking, this character is allowed, but the XML
specification says that it is reserved. You should avoid using it in your documents, unless you are working
with namespaces, which we’ll discuss later in this chapter.

O Element names cannot start with the letters xml, in uppercase, lowercase, or mixed (i.e. xml, XML, XmL, or
any other combination)

0 There cannot be a space after the opening < character; the name of the element must come immediately after
it. However, there can be space before the closing > character, if desired.

Nested Elements

An XML element can contain other nested elements. For example, the root element may contain a nested element
having the text content “Ambrish™
<7 xm} varsiorm 1: 0' encmh ng= !JTF-S'
<Ewployees>
<Fi r‘stmembn sh-:JFi rstﬂw
Here, t.he <FirstName> element is nested in the <Employees> element The <FirstName> element contams
the text Ambrish.

Empty Elements
An element may have no nested element or content. Such an element is termed an empty element, and it can be
written with a special start tag that has no end tag. For example, the <MiddleName/> is an empty element. If
you include this empty element within your document, the document looks like this:

1030

Working with XML

+iafEmployeess SR s s S e eaed W0 S B
Elements can have attributes, which are specified in the start tag. An example of an attribute is <LastName
title=“Singh™></LastName>. An attribute is defined as a name-value pair. In the previous example, the
name of the attribute is, of course, title, and the value of the attribute is Singh. With an attribute added, the
example document looks like the one shown here:
ancoding="UTF=8' -standalone="yes i Td o tmo ol

Escaping Delimiter Characters
XML tags use angle brackets {> and < symbols) for enclosing tag names. Thus, these characters cannot appear in
the element data. If you want to include these symbols in your data, you must use the replacement character

sequences. Table 27.1 lists all the special characters and their corresponding replacement character sequences in
XML:

Table 27.1: Special characters and replacement character sequences in XML

* "
< <
> o &t

Now let’s assume that you want to add another element Birthday having an attribute name, date, with the
value <24/01/1982>. As already mentioned under the heading “XML Elements”, you are not allowed to
include delimiter characters within an attribute value. However, you can use the & lt; character sequence to
escape <, and the sgt; character sequence to escape >. So, with that in place, the document now looks as
follows:

CEmplOyess> - | . oAl b oL :
Another mechanism for including delimiter characters within the body of a construct is to use escaped numetic
references. For example, the numeric American Standard Code for Information Interchange {ASCII) value for the
> character is 62. S0 you can use the > character sequence instead of sgt;. Using escaped numeric
references is, of course, the most general mechanism for including delimiter characters within a construct’s body.

XML Attributes
XML attributes provide additional information about elements. Let’s again consider the following code snippet:
KR Mk versions ncodings"VIRE-8 standalonews’yes?, 2 DUEE sy) 2T

<FirsthanesAmbrish</FirstNates

Chapter 27

i L " A e t ok P B T gl 2
Here, date is an attribute for the element <Rirthday> as the title is for the element <LastName>. Attributes
values are always given in single or double quotes, In case the value itself contains double quotes then give it in
single quote, otherwise use the double quote syntax. Attributes are used for storing data. However, the data can
also be stored in child elements. There is no rule associated with XML documents as to when to use child
elements or attributes for storing data. The best practice says that you should avoid using attributes. Some
problems with using attributes are as follows:

Atiributes have no multiple values, whereas child elements have.
You cannot expand attributes easily.

Attributes cannot describe structures, whereas child elements can.
Attributes are difficult to maintain programmaticaliy.

O Itis difficult to test attributes values against DTD.

Valid XML Documents

An XML document is said to be valid if it is validated against a Document Type Definition (DTD). Valid XML
documents have correct XML syntax. An XML document is said to be well formed, if it conforms the following:

XML.documents must have a starting tag and closing tag.

XML tags are case-sensitive,

XML elements must be properly nested,

XML documents must have a Root Element and only one Root Element.
XML attributes values must be quoted.

In XML, white space is preserved,

XML declaration starts with <z Xml, and ends with? >.

If it is included then you must include the version attribute as it is required, but the encoding and
standalone attributes are optional.

The XML declaration must be at the beginning of the file.
The version, encoding, and standalone attributes must be in that order.
Element names can start with letters or the _ character, but not numbers or other punctuation characters.

ODo@o

DOooO0O0ODDOaQO

After the first character, numbers are allowed, as are the characters — and . .
Element names can’t contain spaces.

Element names can’t contain the : character. Strictly speaking, this character is allowed but the XML
specification says that it is reserved. You should avoid using it in your documents, unless you are working
with namespaces, which we discuss later in this chapter.

[I o R I A

O Element names can't start with the letters xm1, in uppercase, lowercase, or mixed, i.e. xm1, XML, XmL, or any
other combination,

O There can’t be a space after the opening < character; the name of the element must come immediately after
it. However, there can be space before the closing > character, if desired.

Viewing XML
Let’s now understand how XML documents are viewed in your browsers. You can use XML for any browser,
Each XML file contains a plus (+) or minus (-) sign in the left of the elements. When you click on the minus sign
the elements collapse, and when you click on the plus sign the elements expand. For example, when you open an
XML document in IE, it will look like the one shown in Figure 27.1(you can find the products.xml file in the
Code/XML/Chapter 27/XML folder on the CD):

1032

Working with XML

B LR AR

<xml vergion="1.0" encoding="UTF-8" 7> v
- <PRODUCTDATA
- PRODUCT >

<FRODIC-P001 </PRODID >
PRODUCTNAME >Barbée Doll</FRODUC THAME >
<DESCRIPTION:This is & toy for childran in the age group below 5 years </ DESCRIPTIONS
<PRICE~$24.00</PRICE»
SQUANTTTY »12</QUANTITY >
< PRODUCT >
—- <PRODUCT >
<PRODID PO02 </FRODID >
<PRODUCTNAME >Mini Bus</PRODUCTNAME -
<DESCRIPTION>This is a toy for children in the nge group of 5- 10 years < DESCRIPTION »
<BRICE »$42.00</PRICE>
COUANTITY >6</QUANTITY >
</PRODUCT 3>
~ PRODUCT >
<PRODID »POG3 <fPRODID >
PRODUCTHAME >Car</PRODUCTNAME>
<DESCRIPTION>This Is a toy for children in the age group of 10-15 years </ DESCRIPTION>
<PRICE >$60.00 </PRICE
<QUANTTTY »21 ¢/ QUANTITY >
«/PRODUCT »
</ PRODUCTOATA

B b Compure | Protected Mode: OF
Figure 27.1: Viewing XML in IE

Suppose you click on the second and third minus (-) sign from the top, then the display will look like the one
shown in Figure 27.2:

<?uml version="1.0" encoding="UTF-8" 7=
- ¢PRODUCTDATA:»

+ <PRODUCT >

+ <PRODUCT >

- <PRODUCT >
<PRODID ~P03 </PRODID &~
<PRODUCTMAME >Car</PROCUCTNAME >
<DESCRIPTION>This is a toy for childran In the age group of 10- 15 years</DESCRIPTION >
<PRICE>$60.00 </PRICE>
CQUANTITY >2 1 < QUANTITY »

</PROCUCT >
</PRODUCTDATA>

.) ’c«-‘mumwmm_
Figure 27.2: Collapsed XML File in IE

However, when your XML file contains any error it will display it in the browser. In this case the XML file that

contains an ervor because the start tag and end tag of Age elements do not match:

1033

Chapter 27

XML Parser

The XML Parser is used to read, update, create, and manipulate the XML document. For manipulating the XML
document, the XML parser loads the document into the computer’s memory and then the data is manipulated
using the DOM node-tree structure. The XML parser is a part of the software, which reads the XML files and
tests whether the XML document is well-formed against the given DTD or the XML schema. Moreover, the XML
Parser also makes the XML files available to the application with the use of the DOM. There are some differences

The XML page cannot be dispiayed

Carnot view XML mput using X5L siyle sheet, Piease correct the srrar
and then dlick the Zgfesc buttor, o try agan |ater.

End tag 'Aage’ does not match the start tag "Age’. Errar
processing resource ‘flle:/ //C:/ XML/ emp.xml’. Line 6,
Positlon 11

<hyge-28C/Rager

Mhpac i

(IR RN,

]

i Dene MF Computes | Protected Mode: Off C R I00% v

Figure 27.3: An XML File Showing Error in IE

between Microsoft’s XML parser and Mozilla’s XML parser.

Let’s consider an HTML file, which parses an XML document. This script works for Internet Explorer, Mozilla,
Opera, etc. The code, given in Listing 27.1, for the HTML file required for this application (you can find this file
named xmlparser2.html in the Code/XML/Chapter 27/XML folder on the CI}:

Listing 27.1: xmlparser2.html

type="text/javascript™s

‘var wmifarseboc .

1034

Working with XML

< document, getElementBid(
' XmiParseoc.ge ;

' dacument getEl
el '

) AANGPHTMU=

</scripts . L
“<fheads><body..onloz

<hl>Employes Details

- n1ParsedoL. ' ‘
In the preceding code snippet, the first line creates an instance of Microsoft’s XML parser. The script will not
start execution before the document is properly loaded. This can be done by turning off asynichronized loading.
The second line does the same. The third line simply loads the XML documents.

The code will slightly change when performing the same things in Mozilla, Firebox, and Opera. It looks like the

one shown here:

ST it ParseDec. on tnadwgetmessage; : R ‘ : L
In the first line, the first parameter tells the XML namespace, the second parameter specifies the root of XML
document, and the third is always null as it is not implemented yet.

Here's the XML document, given in Listing 27.2, which this file parses (you can find the emp.xml file in the
Code/XML/Chapter 27/xML folder on the CD):

Listing 27.2: emp.xmi

Lo/ ages

</Efipioyes> = A e : -
When you run the xmlparser2 . html file on your browser, a Web page, as shown in Figure 27.4, is displayed:

- .

LTUNRLRS

Employee Details

First Name: Ambrish
Middte Name: Kumar
Last Name: Smgh
Age: 2%

Doe T B Computer | Protected Mode: OF qlwe -

Figure 27.4: Parsing an XML File

1035

Chapter 27

Document Type Definition
The purpose of a Document Type Definition (DTD) is to define the rules and attributes for using the tags in an
XML document. A DTD defines the XML document structure with a list of legal elements and attributes. A DTD
can be declared inline in your XML document, or as an external reference.

Defining DTD for a Single Element
Let’s learn about writing DTD definitions. Initially, we define DTD for a single element, which does not contain
any text or other element. This DTD ftells the parser that the XML document contains elements of the type

defined in DTD, and these elements are also not designed to contain text. The following code snippet shows the

portion of DTD required for the product.xml file:

In this code snippet, the ELEMENT tag prefixes with characters <! and is followed by the name of the element
{PRODUCTDATA) and PRODUCT+ expression inside parenthesis. This indicates that the PRODUCTDATA
element contains one or more elements of type <PRODUCT>. If we do not use the plus sign, the DTD definition
conveys to the parser that the PRODUCTDATA element only contains a single PRODUCT element.

Table 27.2 lists all qualifiers that we can use in DTD definition.
Table 27.2: Qualifiers of a DTD File

Optional (oroe) -

Question mark
* Asterisk Zero or more
+ Plus sign One or more

In the previous code snippet, you saw a DTD definition where one element can contain several elements of only
one type. You can define DTDs for complex and hierarchical XML documents where the root element contains
many instances of different types of elements specified in some definite order. For this, you need to include
multiple elements, appended with qualifiers, inside the parentheses in a comma-separated list. The comma-
separated list specifies the validity and the order of occurrence of each element.

You can also nest parentheses to group multiple items, For example, to include an image element for every title
element, you need to include the ((image, title)+) expression inside parentheses.

Defining Text and Nested Elements
Now we are ready to include text inside the elements and define nested elements. We now create a DTD
definition that tells the parser that which elements can contain nested elements or text. The following code
snippet shows how to create the elements of the product.xml file to contain text or nested elements:

IENT | DESCRIPTIONCRRCDATA)>, © -+ 00l R

This code snippet tells the parser that the <PRODUCT> element must consist of the <PRODUCTNAME?> and
<DESCRIPTION> elements. The <PRODUCTNAME> and <DESCRIPTION> elements are defined to contain the
data of type PCDATA. PCDATA stands for parsed character data. The difference between PCDATA and
CDATA is that PCDATA text is parsed while the text inside the CDATA section is ignored by the parser. The #
symbol in the preceding code snippet indicates that the keyword used after this symbol is a special word rather
than an element name.

1036

Working with XML

You can define DTD using the or condition. You can do this using the vertical bar (|). Consider the following
code snippet:

“<}ELEMENT. 1tem (¥PCDATA [Ttem)*.» . L : o R
In the preceding code snippet, the element item can contain euher PCDATA or an 1tem The astensk at the end of
the code snippet signifies that either element can occur zero or mere number of times in a succession. Therefore,
item element can contain mixed content (both text and element).

Referencing the DTD
You can include DTD in two ways, directly and indirectly. Including a DTD directly involves including the DTD
in the parent XML document. Including a DTD indirectly involves providing a DTD as a separate file outside the
parent document, with a reference of the external DTD in the parent document. This process of providing a
reference to the external DTD in the parent XML document is called referencing the DTD. Referencing a DTD in
a XML document is required when size of the DTD is large.

Let’s suppose our DTD name is drink.dtd and it is located in the http://kogentindia.com/lifestyle/
drink.dtd. Listing 27.3 shows the drink.xml document:

Llstmg 27.3: drmk xml document

& ‘callecyion> .

The preceding Listing 27ontains an arbitrary reference to dn.nk dtd (as a placeholder). You have to manually

include drink.dtd to make this example work correctly.

The DOCTYPE tag shows the location of drink.dtd as http://kegentindia.com/lifestyle/drink.dtd

and also shows the name of the root element (that is collection) of drink.xml . You can provide a reference to the

external DTD in the following two ways:

O <IDOCTYPE collection SYSTEM “drink.dtd”—This syntax is used when both drink.dtd and the XML
document are residing in same directory.

O <IDOCTYPE collection SYSTEM “c;f/drink.dtd”>—This syntax is used when drink.dtd and the parent
XML document reside in separate directories.

The DCCTYPE specification can also contain DTD definitions within the XML document, rather than referring an

external DT file. Such definitions are specified in square brackets, as shown in the following code snippet:

1037

Chapter 27

DOCTYPE collection SYSTEM "dr'ink qtd" [
‘ suhset définivions’ here. A

i

Defining Attributes in the DTD

A non-validating parser is required while defining simple and nested elements. However, while working with
validating parser, DTD must specify valid attributes for the different elements. Let's define the attributes for the
elements in the drink xml document. Listing 27.4 shows drink.dtd file used in drink.xml:

Listing 27.4: drink.dtd file

©7 SRIELENENT doTlection (desc,drink®p>:

The drink.dtd defines that drink xml must have one root element (colleétion), which consists of one desc element
and zero or more elements named drink. The element named drink must contain one name element, zero or
more elements named ingre, one prep element, and one nutria element. Each element is defined using the
ELEMENT standard DTD tag,.

The ATTLIST DTD tag is used to define the attribute definitions of elements named ingre and nutri. The name
parameter, which follows the ATTLIST tag, specifies the element for which the attributes are being defined.

Each attribute is defined by a series of three space-separated values. The first value in each line is the name of the
atitribute: in this case it is name, quant, or unit. The second element indicates the type of the data, such as
CDATA. Table 27.3 lists the types of attributes of a DTD!

Table 27.3: Attributes of a DTD

{valuel | value2 | ...) Specifies a list of values, separated by vertical bars

CDATA Specifies unparsed character data (a text string)

ENTITIES Specifies a space-separated list of entities

ENTITY Specifies the name of an entity defined in the DTD

1D Specifies a unique name of the attribute that no other ID attributes shares
IDREF Specifies a reference to an ID defined in the DTD document

IDREFS Specifies a space-separated list containing one or more ID references

1038

Working with XML

Table 27.3: Attributes of a DTD

i

NMTOKEN Specifies a valid XML name composed of letters, numbers, hyphens, underscores, and

colons
NMTOKENS Specifies a space-separated list of names
NCTATION Specifies the name of a DTD-specified notation, which is used for non-XML data

formats. For example, image files are specified in the non-XML data format

An attribute type may consist of a parenthesized list of choices, separated by vertical bars. In this case, the
attribute must use one of the specified values. The following code snippet illustrates such a case:

"

: rice #PCDATA #REQUIRED> i e R e S
This code snippet specifies that the product element’s type attribute must be given as type="cd” or
type="cassette”. The type attribute cannot take any other value.
The last value in the attribute definition determines the attribute’s default value, if any; and specifies whether or
not the attribute is required. Table 27.4 lists the specifications of a DTD file:

Table 27.4: Specifications of a DTD file

[T

$FIXED “fixedValue” The attribute must take the value specified in double quotes after the #FIXED

keyword

$IMPLIED The attribute value need not be specified in the document

#REQUIRED The attribute must take the vakue of the type specified in the attribute definition of the
document

“defaultValue” The default value must be used if a value is not specified in the document

Defining Entities in the DTD
You have seen predefined entities, such as &, in the section Substituting and Inserting Text. Let's now learn
how to define entities of your own. Entities can be defined internally in an XML document or in an external
DTD. Entities defined in an external DTD can be referenced using the following syntax:

| <lENTITY -entity-name. SYSTEM "URT/URL"> - .© . = ' g Do g i

The ENTITY tag name specifies the referencing of a user-defined entity. The entity-name parameter specifies the
name of the entity and the URL parameter represents the URL of the DTD or XML document that contains the
definition of the entity.
Referencing external entities has been described in detail later. For now, let’s define an entity internally, as
shown in the following code snippet:
SR ENTTTY enEity-nane Teptt! SR i SRR :
The substitution string replaces the entity name whenever it is referenced in an XML document. The substitution
string is defined in quotes, which are not included when the text is inserted into the document.

let’s write the following code snippet defining two entities, writer and copyright:

1039

Chapter 27

Now, add the following code snippet in an XML document to use these entities:

T aauhere i iterScopyiight <fauthop i

In the preceding two code snippets, we have defined the copyright information of certain published materials
created by an organization, Kogent. Suppose at a later point of time, another organization acquires the copyright
of the book, the copyright information needs to be changed only at one place, i.. in the copyright entity defined
in the first code snippet. The updated copyright information would then be reflected in all the XML documents
using the copyright entity (defined in the first code snippet),

Note that user defined entities are also referenced with the same syntax (¢entityName;) that you use for
predefined entities, and the entity can be referenced in an attribute value as well as in an element’s contents.

Referencing External Entities
To reference external entities defined in a DTD or XML document, you need to use the SYSTEM or PUBLIC
identifier. Let’s reference an external entity, which is a copyright message contained in the copyright.xml file,
The following code snippet shows how to specify a name for an external entity

drd

The copyright.xml contains the following copyright message:
el TA SAMPLE COPYFIGhY whg 1 e e s e e S g R
This book may not be duplicated in any way without the express written consent of the publisher, except in the
form of brief excerpts or quotations for the purposes of review.,

o

We can use external entities similar to internal entities, as shown in the following code snippet:
+ 7 authors Swriter;©rightsc/authors % e

You can also use an external entity declaration to access a Servlet that produces the current date by referencing

an external entity, as shown in the following code snippet:

Today"s date is &cur

Referencing Binary Entities
You can reference unparsed entities, such as image files and multimedia data files, in XML documents in the
following two ways:
@ Using a MIME Data Type
O Using Entity References
Let’s discuss each method in detail.

Using a MIME Data Type
XML namespaces standard, in conjunction with the MTME data types defined for electronic messaging
attachments, provide a very useful, understandable, and extensible mechanism for referencing unparsed
external entities. The following code snippet defines a DTD for XMI. documents that refer to image files:

lacesindelhi (image?, title, prioals
itie ((#PCDATA)> S

1040

Working with XML

This code snippet declares image as an optional element in the parent element, placesindelhi. The code
snippet also defines image as an empty element, and then defines the attributes it requires, The definition of the
image tag is similar to that of the HTML 4.0 img tag, except the type attribute. The image tag attributes are
defined by the ATTLIST entry. The alt attribute, which defines the alternative text to display in case the image
cannot be found, accepts character data (CDATA). It has an implied value, which means that it is optional and
that the program processing the data can replace the image with an alternative text, such as Image not found. On
the other hand, the src attribute, which specifies the name of the image to be display, is required. The type
attribute is intended for the specification of a MIME data type, as defined at http://www.iana.org/
assignments/media-types/. It has a default value named image/gif. In the document, a reference to an
1mage named Intro- plC can be declared as shown in the followmg code smppet

dme sremtii FINErg-piCy xa}w-xntw 2" 21 A L

" type="image/gif" /> : : g .

Using Entity References

The second way is to create an external ENTITY reference is by using the notation mechanism. However, in this
case, you need to specify DTD NOTATION elements for JPEG and GIF data. These notation elements can be
obtained from a database. In the notation mechanism, you need to define a different ENTITY element for each
image that you intend to reference. If you include new images in the XML document, you need to specify both a
new entity definition in the DTD and a reference to it in the XML document. As a result, this mechanism is not
preferred.

Limitations of DTDs

This section explains about the limitations of DTDs. Suppose you need to define an entity definition to contain
either text, or text followed by one or more list items. However, this specification turns out to be hard to achieve
ina DTD.

For example you might be tempted to define an item as shown in the fo]lowmg code smppet

& < TELEMENT T oom: (FPEDATA > 1 (HPCOATA Trem)) 7o il 0 v inid L
Hnwever, part of the definition does not conform to mixed content model. As a resu]t the parser raises the
following error:

~ X1 legat mixed content moded For "itew’. Foutid S#x28;. ...
Let’s now redefine the item element twice in a DTD definition:

Above DTD definition raises a duplicate definition warning during parsing and ignores the second definition.

In such cases, we can define item elements in a DTD to support mixed content model. Further, we cannot
perform tests such as determining the kind of text inside PCDATA, determining whether text of PCDATA
contains numbers or corresponds to appropriate date format.

All these limitations are fundamental motivations behind the development of schema-specification standards.

Parameter Entities and Conditional Sections

In this section, you’ll see how to define and use parameter entities. You'll also learn how to use parameter
entities with conditional sections ina DTD.

Creating and Referencing a Parameter Entities
If the drink.xml document uses HIML tags, it cannot be validated using entities and atiribute definitions
defined in drink.dtd. To validate these HTML-style tags in the XML document, you need to include the
definitions of HTML style tags defined in xhiml.did. A parameter entity is required in such cases.

In the foIlowmg code snippet, the <i> tag is used to display the text in italized format:

Chapter 27

: gste»-ﬂ»;dd Tegion]ﬁice and emshed *icﬂ r.ubes to:the fnﬁt--aﬁx-'- '41:-«;!5?.@?

Add the followmg code smppet to drmk dtd s0 that the drlnk xm.l document can contain the <i> HTML tag
o O<IENTITV'X th.:ﬂ’l SYSTEM Vﬂta!'l dtd" .

S RxhtaT)

To see all tags of xMmidtd (in HTML format), visit hilp/java.sun.com/j2ee/1.4/docsAutorial/examples/
xmi/samples/xhtmi-dtd.html.

In the preceding code snippet, you use an <!ENTITY> tag to define a parameter entity. The definition of the
parameter entity is similar to a general entity, but you use a somewhat different syntax. You include a percent
sign (3} before the entity name when you define the entity. In addition, you use the percent sign instead of an
ampersand when you reference it in the parent XML docurnent. Note that there are always two steps to be
followed while using a parameter entity:

Q The first is to define the Entity name.
O The second is to reference the entity name, which actually includes the external definitions in the current

DTD.
The following code snippet defines the definition of an entity, which includes breaks and whose text is in the
bold format:

CoPENTLRY %o Tine “¥pcparTalemibilaling [be" s SIS e L

The fo]]owmg code snippet shows how we can use this entlty in element def1rutlor|s

Cot ELEMENT it Te [(Rintinery : :
The preceding code snippet allows the title e]ement in the XML document to use the and tags

Conditional Sections

You can use parameter entities to contrel conditional sections. As you know, you cannot check or verify the
contents of an XML document. The verification of contents of an XML document can be done by defining
conditional sections in a DTD, which become part of the DTD by specifying the include keyword. On the other
hand, if you specify the ignore keyword; the conditional section is not included. For example, you need to define
different versions of a DTD according to whether you were treating the document as an XML document or as a
SGML document. You can do t}us by usmg DTD defl.mtlons, as show in the followmg code snippet:
Lhakterag, dedy N i AR

St INCEUDE: [:

v XML~only gg imtian&

<11 Tonome [- SRR §
<iv SoML-onty def'in*itmns B

.common deﬁmtwns - e : : s
The above code snippet shows how to include a condltlonal section in a DTD A conditional section begms with
<![, followed by the INCLUDE or IGNCRE keyword and another { character; and finally the
contents of the conditional section are defined within [] followed by the terminator:] >
The above code snippet specifies that the XML definitions are included, and the SGML definitions are excluded.
We can include DTD definitions for both XML and SGML documents using parameter entities in place of the
INCLUDE and IGNORE keywords, as shown in the following code snippet:

Working with XML

. common defimitions DGR e ._ :
When using parameter entities, each document that uses the DTD can set up the following appropriate entity
definitions:

LR

e e cdrd”

This procedure verifies each document (XML or SGML) on the basis of the entity definitions provided in the
DTD. It also replaces the INCLUDE and IGNORE keywords with variable names that more accurately reflect the
purpose of the conditional section, producing a more readable, self-documenting version of the DTD.

Advanced XML

So far we discussed the basics of XML. Now it is time to discuss some advanced features of XML. The advanced
features of XML include the following:

G XML namespaces

XML CDATA

XML encoding

XML on the server

XML application

XMLHttpRequest object

Saving Data to XML file

Let’s explore more about these features.

XML Narmespaces

We are now able to create a well-formed XML document. However, what happens if our application becomes
mote complex? Then we need to combine elements from various document types into one XML document. 1t is
possible that two document types have elements with the same name, but with different meanings and
semantics. This section will introduce XML namespaces, the means by which we can differentiate elements and
attributes of different XML document types from each other when combining them together into other
documents, or even when processing multiple documents simultaneously.

coocoodQ

It is not required that every XML document have namespaces. Namespaces are optional components of basic
XML documents. However, namespace declarations are recommended if your XML document is going to be
shared with other XML documents that may share the same element names. Also, newer XML-based
technologies, such as XML Schemas, SOAP, and WSDL, make heavy use of XML namespaces to identify data
encoding types and important elements of their structure.

Let's consider a case 4t which one company believes that a <product> should contain a certain set of
information and another company believes that it should contain a different set of information. Both these
companies will create different document types to describe that information.

Let’s consider an example in which we're going to combine various XML elements from different document
types into one XML document. For example, we might create an XML document type containing information
about an employee, including the employee’s title, but also containing the employee’s resume in XHTML form.
Such a document may look similar to the one as shown here:
cempioyeess e LT h

1043

Chapter 27

To an XML parser, there isn’t any difference between the two <title> elements in this document. If we do a
simple search of the document to find Ambrish’s title, we might accidentally get the ‘Resume of Ambrish Kumar

Singh’, instead of ‘Sir’. Even in our application, we cannot know which elements are XHTML, elements and
which aren’t without knowing in advance the structure of the document. That is, we'd have to know that there is
a <resume> element, which is a direct child of <employees>, and that all of the descendents of <resume> are
a separate type of element from the others in our document. If our structure ever changed, all of our
assumptions would be lost. In the document above, it locks like anything inside the <resume> element is
XHTML, but in other documents it might not be so obvious, and to an XML parser it isn't obvious at all. Such
types of problem are solved by using prefixes, which is discussed next.

Using Prefixes

The best way with which an XML parser can identify an element is by giving every element in a XML document
a completely distinct name. For example, we might come up with a naming convention whereby every element
for a proprietary XML document type gets its own prefix, and every XHTML element gets another prefix. We
could rewrite our previous XML document something like this:
i <hml versiens1.0" sntodimg="150-8359-1" L

| P

In th about—an <emp:title> oran
<xhtml:title>. Doing a search for <emp:title> will always return ‘Sif*. We can always tell which elements
are XHTML elements, without having to know in advance the structure of our document.

By separating these elements using a prefix, we have effectively created two kinds of elements in our
document —emp types of elements, and xhtm1 types of elements. So any element with the emp prefix belong in

1044

Working with XML

) 3
the same ‘category’ as each other, just as any elements with the xhtml prefix belong in another ‘category’. These
‘categories’ are called ‘namespaces.’

Unfortunately, there is a drawback to the prefix approach to namespaces used in the previous XML —who will
monitor the prefixes? The whole reason for using them is to distinguish names from different document types,
but if it is going to work, the prefixes themselves also have to be unique. If one company chose the prefix pers
and another company also chose the same prefix, the original problem would still exist.

In fact, this prefix administration would have to work a lot like it works now for domain names on the Internet.
A company or individual would go to the ‘prefix administrators’ with the prefix they would like to use; if that
prefix wasn't already being used, they could use it, otherwise they would have to pick another one.

In order to solve this problem, we could take the advantage of the already unambiguous Internet domain names

in existence, and specify that URIs must be used for the prefix names. ‘

For example, if you work for a company called Kogent India Inc, which owns the domain name
kogentindia.com, then you could incorporate that into your prefix. Perhaps the document might end up
looking like this:

<?xm1 vers‘iona"l ﬂ" ancod1ng="w1ndows 1252 -'150-8858-1"?:- TR

<{http /ikogentindia com/emp}emp‘!oyees:
<{http://kogentindia. com/empIname> - .
7_._<{http [/kogentmd'ia com/emp}t'it'!e:» L

7 e/ {hexp:/ fkogenm .
Since the company owns the kogentlndla com domam name, we know that nobody else will be using the
http://kogentindia.com/emp prefix in their XML documents, and if we want to create any additional
document types, we can just keep using our domain name, and add the new namespace name fo the end, such as
http://kogentindia.com/other-namespace.

It is important to note that we need more than just the kogentindia.com part of the URL; we need the whole
thing. Otherwise, there would be further problems —different people could have control of different sections on
that domain, and they might all want to create namespaces. For example, the company’s HR department could
be in charge of http://kogentindia.com/hr, and might need to create a namespace for names (of
employees), and the sales department could be in charge of http://kogentindia.com/sales, and need to
create a namespace for names (of customers). As long as we’re using the whole URI, we're fine; we can both
create our namespaces (in this case http://kogentindia.com/hr/names and
http://kogentindia.com/sales /names, respectively). We also need the protocol (http) there because
there. could be yet another department, which is in charge of, e;g ftp://kogentindia.com/hr and
ftp://kogentindia.com/sales.

The only drawback to this solution is that our XML is no longer well-formed. Our names can now include a
myriad of characters that are allowed in URIs, but not in XML names, ‘/ characters’ for example, and for the
sake of this example we used {} character to separate the URL from the name, neither of which is allowed in
XML element or attribute name.

To solve all of our namespace-related problems, we create a two-part names in XML, The first part would be the
name we are giving this element, and the second part would be an arbitrarily chosen prefix that refers to a URL
This URI specifies the namespace which belongs to this element. And, in fact, this is what XML namespaces
provide.

1045

Chapter 27

XML namespaces are used in XML documents by giving qualified names for the elements. These qualified
names consist of two parts — the local part, which is the same as the names we are giving elements all along, and
the namespace prefix, which specifies to which namespace this name belongs.

For example, to declare a namespace called http://kogentindia.com/emp, and associate a <employees:>
element with that namespace, we would do something like the following:
<emp: employees xm1ns:emp=http:f/kogentindia;comfemp/>

The key is the xmlns:emp attribute (xmlns stands for XML namespace). Here, we are declaring the erp
namespace prefix and the URI of the namespace, which it represents (http://kogentindia.com/enp). We
can then use the namespace prefix with our elements, as in emp: employees. As opposed to our previous
prefixed version, the prefix itself (amp) doesn’t have any meaning. Its only purpose is to point to the namespace
name. For this reason, we could replace our prefix (emp) with any other prefix, and this document would have
exactly the same meaning.

This prefix can be used for any descendants of the <emp: employees> element to denote that they also belong
tothe http://kogentindia.com/emp namespace. For example:
<?xmi version="1.0" encoding="150-8853-1"7> e _
<emp:employees xmlns:emp="http://kogentindia.com/enp" = -
xmins:html="http://www.w3.0rg/1999/xhtml"s
" <ompinames SRR TR
<emp:title>Sir</empitities
+ <emp: first-ambrishe/emp: Firsts -
<emp:middie>Komar</emp:middles . - -
- <empslast>Singh</empilast> -,

- <emp:position»Technical writer
<empIresumes ool
exhemichtmls 00

[<xhtml:heads <xhml.:
<xhtm¥rbodys - il
<xhtml:hizambrishe/xhemt:hl> 0 o i
<xhtml:p>Ambrish is a Java Programmer</xhtml:ps”

Ttleskesume af Anbrish Kumar Singh</xhitm] : titVes</xhtnl :haad>

</Xhtm] :body>
o< /xhvemlcheml>
</emp:resumes .
</emp:employeess> : : :
Here, we declare the emp prefix, which will be used to specify elements that belong to the emp namespace, and
the html prefix, which will be used to specify elements that belong to the XHTML namespace.

Default Namespaces

Although the previous document solves all our namespace-related problems, it is just a little bit complex. We
have to give every element in the document a prefix to specify which namespace this element belongs to that
makes the document look similar to our first prefixed version. Luckily, we have the option of creating default
namespaces and it looks like this:
<ampioyees xm1n§="'http:/IKGQentindia;com/emp_f>
<name> : : ' e
<titlesSir</titie>

<employees> T oo e
Notice that the xm1ns attribute no longer specifies a prefix name to use for this namespace. As this is a default
namespace, this element and any elements descended from it belong to this namespace, unless they explicitly
specify another namespace. So the <name> and <t itle> elements both belong to this namespace.

You can declare more than one namespace for an element, but only one can be the default. This allows us to
write XML like this:

1046

Working with XML

<employees-xminé=" http://kogentindia.com/emp *
xmins: h'bm1="http //www w3. org/1999/xhtm'| N
<hame» | .

<titlexsi r</t1 tle»
</name> .

<xhtm1 p>mbr1sh is a-Java Pr‘ogrammer</xhtm"l p>

</emp10yees> : .
in this case, all of the elements belong to the http://kogentindia.com/emp namespace except for the <p>
element which is part of the xhtml namespace. We've declared the namespaces and their prefixes, if applicable,
in the root element so that all the elements in the document can use these prefixes. However, we can’t write XML
like this:

<employees xmlns=".http://kogentindia.com/emp "

xmins="http://wew.w3.org/1999/xhtml™> .

This tries to declare two default namespaces. In this case, the XML parser wouldn’t be able to flgure out what
namespace the <employees> element belongs to.

Defining a Namespace in a DTD

In a DTD, you can specify that an element belongs to a specific namespace by adding an attribute to the
element’s definition, where the attribute name is xm1ns (“xml namespace™). The following code snippet defines
the namespace for the title element ina DTD:

<FELEMENT title- (961n11ne,)*> s

<IATTLIST title ‘L ’ : :

_xml ns. CDATA #FIXED “http //ww exampte com/cassette"

> N :
The parser understands the xmlns attnbute, therefore, declanng the attnbute as FIXED makes the element title
unique among elements of the same name defined in other DTDs.

Referencing a Namespace
You must provide reference to the namespace of an element when an element with the same name exists in
multiple DTDs. You qualify a reference to an element name by spectfymg the xmlns attrlbute, as shown here
<t1t1efxm1ns="http ;/www examp1e cum/cassette“> :
ove-rview - S o
</titTes:: . : :
The specified namespace apphes to that element and to any elements contained within it.

XML CDATA

XML uses some characters so you cannot include these characters in your Parsed Character Data (PCDATA)
because they are used in XML syntax —the < and & characters —like this here:
<}--Thisg: #5 nox well-form ' ' :
<compares5.is. < 7. & -7-»- S</compare> .
This means that the XML parser comes across the < character and expects a tag name, 1nstead of a space, Then it
assumes it as an element and searches for its closing tag, which it will not get and consequently give an error
message. There are twe ways you can get around this —escaping characters, or enclosing text in a CDATA
section.

Escaping Characters

To escape these two characters, you simply replace any < characters with &1t; and any & characters with
& . The preceding <compare> element could be made well-formed by doing the following:
<compare>5 is &Vt} 7 & 7 > 5 </compare>

1047

Chapter 27

Notice that IE 5 automatically un-escapes the characters for you when it displays the document. In other words,

it replaces the §1t;, samp; and sgt; strings with <, &, and, > characters. The strings &1¢t; and samp; are
known as entity references. The following entities are defined in XML:

d samp; -the & character
O < -the < character
a sgt; -the > character
Q sapos; -the * character

O sguot; -the ** character

Other characters can also be escaped by using character references. These are strings, such as s#nnn;, where
nnn would be replaced by the Unicode number of the character you want to insert. We have already discussed
this in the section “XML Elements”.

CDATA Sections

What happens if your data contains many <, >, &, and “characters? In that case, if you use escaping character
tricks then you may find that your document quickly becomes very complex and unreadable. To overcome this
problem the other technique is used which is a CDATA section.

Using CDATA sections, we can tell the XML parser not to parse the text, but to let it all go by until it gets to the
end of the section. CDATA sections look like this:

<compare><! [CDATA[S is < 7 & 7 > 5}]></compare> ... N .-
Everything starting after the <![CCATA! and ending at the]] > is ignored by the parser, and passed through to
the application as is. The only character sequence that can’t occur within a CDATA section is] 1 >, since the XML
parser would think that you were closing the CDATA section.

In these trivial cases, CDATA sections may look more confusing than the escaping did, but in other cases it can
turn out to be more readable. Consider the following example that uses a CDATA section to keep an XML parser
from parsing a section of JavaScript:

<script language='JavaScript's<! [CDATAL

Function myFund() { '

IF(0 < 1 && 1< 2)

CUATert(tcorrect™)

Ys</script> el b e

XML Encoding

As we know that text is stored in computers using numbers, since numbers are all that computers really
understand. You are already familiar with one character code, the American Standard Code for Information
Interchange (ASCII). For example, in ASCII the character a is represented by the number 97, and the character A
is represented by the number 65.

There are seven-bit and eight-bit ASCII encoding schemes. 7-bit ASCII uses 7 bits for each character, which limits
it to 128 different values, while 8-bit ASCII uses one byte {8 bits) for each character, which limits it to 256
different values. 7-bit ASCII is a much more universal standard for text, while there are a number of 8-bit ASCII
character codes, which were created to add additional characters not covered by ASCII, such as 150-8859-1. Each
8-bit ASCII encoding scheme might have slightly different sets of characters represented, and those characters
might map to a different number. However, the first 128 characters are always the same as the 7-bit ASCI
character code.

ASCII can easily handle all the characters needed for English, which is why it is the predominant character
encoding used on personal computers in the English-speaking world for many years. But there are more than
256 characters in all of the world’s languages, so obviously ASCII (or any other 8-bit encoding limited to 256
characters) can only handle a small subset of these. This is why Unicode was invented.

1048

Working with XML

Unicode .

Unicode is a character code designed from the ground up with internationalization in mind, aiming to have
enough possible characters to cover all the characters in any human language. There are two major character
encodings for Unicode — UTF-16 and UTF-8. UTF stands for Universal Character Set Transformation Format, and
the number 8 or 16 refers to the number of bits that the character is stored in. UTF-16 takes the easy way, and
simply uses two bytes for every character (two bytes = 16 bits = 65,356 possible values).

UTE-8 is cleverer; it uses one byte for the characters covered by 7-bit ASCII, and then uses some tricks so that
any other characters may be represented by two or more bytes. This means that 7-bit ASCII text can actually be
considered a subset of UTF-8, and processed as such. For the text written in English, where most of the
characters would fit into the ASCII 7-bit character encoding, UTF-8 can result in smaller file sizes, but for text in
other languages, UTF-16 can be smaller.

Because of the work done with Unicode to make it international, the XML specification states that all XML
processors must use Unicode internally. Unfortunately, very few of the documents in the world are encoded in
Unicode. Most are encoded in ISO-B859-1, or windows-1252, or EBCDIC, or one of a large number of other
character codes.

Unicode is managed and developed by a non-profit group called the Unicode Consortium. For more information
on encoding and a listing of encoding types for XML, the Unicode consortium and the W3C has published a joint
report, available at the Unicode Consortium site, http://www.unicede.org/unicode/reports/tr20.

Apart from UTF declarations for XML document encoding, any 150 registered charset name that is registered
by the Internet Assigned Numbers Authority (IANA) is an acceptable substitute. For example, an XML 1.0
document encoded in Macedonian would look like this in XML declaration: <?xml wersicn="1.0"
encoding="JUS_I.B1.003-mac™?>

A list of currently registered names can be found at: http://www.iana.org/assignments/character-
sets.

XML on the Server

You can store the XML file on the Internet server as you store HTML files. Write any XML file code and save it
with . xml extension on the server. For an example, open the Notepad and type the following lines:
<7xm} version="1.0" EI’ICOd'J ng'—’.“ISO ~8859-T" I :
<Employee> . PR
<F1rstuame>Ambr1sh</F1rstName>'_-. R
<Midd1eName>Kumar</Mi ddTeNames:
<i.astName>Singh</i LastName>
<age>25</age>
</Employee> .
Now save this file with the name employee . xml on the server.

XML Application
Let's now understand how we can load an XML file directly into an HTML page. This section also explains how
you can display the data stored in an XML file in table format. The application works in a manner similar to the
one given in section “XML Parser”, except that here we are not using any parsing techniques. We simply load the
XML file directly.

- The code, given in Listing 27.5, shows the xmlparser.html file (you can find the xmlparser.html file in the
Code/XML/Chapter 27/XML folder on the CD):

Listing 27.5: xmlparser.html
<html>
<head>
</head>

<body>

<l sre="emp.xml" ds"empld" async="false > «;fkm'lz :
<hl>Employee Details</hl> - : R

1049

Chapter 27

<table datasrc="#empid" width="100%" barder="1">
<thead>
Lo o <theFirstName </ the
oo sth>MiddleName</thy
.z <th>LastName</th>
.. . <th»Age</th>
</thead> N
<tr align="left"s - S _
: <td><span. datafld="FirstName"s'</spans</tds -
- <td></td> . =
- <te></tds . o0
. <td></td> ., ..

et
</tables
</ps
aicfbodys o oars
</htmls - - _ Ce
This file loads an XML file, emp . xm1, by the code line:
<xm] sroelemp. xm]” id="empid" async="false"> </xmls . e S Gesle L R0 L
The id attributes here specifies the key for accessing this XML file. Now we require that the script will not start
executing before the document is not properly loaded. This can be done by turning off the asynchronized
loading. So we define async="false”. Then we access the XML elements by using the datafld attribute, as
shown in following code snippet:
- <table datasrcs"fempid” widtha"100%" horders"L% .
<td><span datafld="FirstName"s</tds
<tds_</spa_n>2/_td_>_2 S

<td><span. datafld="LastName"></td> - -

<tds</td> -~ . : e
The XML file used for this application is the same as the one given in Listing 27.2. When you run the
xmlparser.html file in the Internet Explorer browser, it displays the XML data in the form of a table, as shown
in Figure 27.5:

i Employee Details

i FirseName O iddleName 0 LatName | age
E Aaibrish Koo Singh o

| B .

!
|

fione W Tamrne | Footdored ode Tt AW -

Figure 27.5: Showing XML Data in Tabular Form

Here’s another HTML file, given in Listing 27.6, which simply displays the data of an XML file (you can find the
xmlparser3.html file in the Code/XMIL/Chapter 27/XML folder on the CD):

Listing 27.6: xmlparser3.html
<html> . T _

<ml src="emp.xml” id="empid" async="false"s</xmis
<h3>Employee Details</h3> - S

o <br:. f><bsFirstName: Rt

" </span-
_<br [>MiddleNamei . U TR
.<span datasrc="#empid" datafld="widdleName"s.
<br. /><brlastName:</bs . .0 O ho o Do
<span datasrc="#empid" datafld="LastName"s</spans..

1050

Working with XML

Age: : N

</body>
</html>
This file simply loads an XML file in a similar manner as the previous one. Its output in the IE will look like the
one shown in Figure 27.4.

XMLH!tpReqguest Object

The XMLEttpRequest object allows scripts to communicate with the server, outside the normal HTTP request-
response scenario. The main purpose of the XMLHt tpRequest object is to be able to use just HTML and script to
connect directly with the data layer that is stored on the server. It allows you to bypass the need for the server-
side scripting in many instances. The benefit of using the XMLBt tpRequest is that you don’t have to send the
page or refresh it because changes to the underlying data are immediately reflected in the web page displayed
by the browser.
Here we are going to discuss how you can create the XMLHt tpRequest object in both FireFox and IE. In IE 7,
Firefox, Safari, and Opera, the syntax needed to create an XMLEt tpRequest object is as follows:
var xmiHttpRequest = new XMLHttpReéquest(};
InlE 5 and IE 6, the code looks like this:
var xmlHttpRequest = new ActiveXxobject{“Micirosoft.XMLHTTP");
You can use the XMLHttpReguest in two ways—synchronously or asynchronously When you use it
synchronously, you first create an object, create a request, send it to the server, and then wait for a response. This
is what you normally do in a traditional web model. But, if you are using it asynchronously, then it behaves in a
different way. In this case, you must call the object using the onreadystatechange event. It happens in the
following ways:
Q@ First, you create an object and then set the onreadystatechange event to trigger a specific function.
O The function checks the readyState property.
0 If the data is ready, it opens the request and sends it.
O After sending the request you can continue your processing. You need not wait for a response and you'll
interrupt only when you get the response from the server.

XML Technologies
So far we discussed about XML and its components. Now we are going to discuss about the technologies related
to XML. Some of the commonly used XML-related technologies are as follows:
Q Extensible HTML (XHTML)

DOM

S5AX

XSLT

Xpath

Now [et’s explore more about these technologies.

Extensible HTML (XHTML)

XHTML refers to the eXtensible HyperText Markup Language whose main focus of existence is to replace
HTML. XHTML is the HTML. defined in the form of the XML application. XHTML is very similar to HTML 4.01.
From 26 January 2000, the W3C defined XHTML as the latest version of HTML. All browsers support XHTML.
Although HTML is a markup language, we know that HTML documents are not well formed like the XML
documents. XML is used to describe data, while HTML is ‘used to display data. Therefore, when both HTML and
XML are combined, we get a more powerful markup language — XHTML. XHTML documents must also follow
somie rules. These rules are as follows:

| W = = =

O Elements should be properly nested

1051

Chapter 27

O Elements should have end tag or closing tag

U Elements should be in lower-case

0 Like XML, XHTML documents should have one root element

The following is the code snippet providing the minimum XHTML document ternplate:

<1DOCTYPE html PUBLIC “-//W3C//DTD. XHTML 1.0 strict//EN"
“http://www. w3, org/TR/xhtm11/0TD/xhtill-strict. dtd">
<html> R : : S

As provided in the code snippet, the XHTML document comprises of three indispensable parts:
ad DOCTYPE

0O Head
O Body
The DOCTYPE declaration defines the document type as follows:

A R e W3 org/ TR Xl 1 /0TD/ihem T - st Ficr ide SN .
The rest of the document remains the same as the HTML document having the <htrl> </html> fag
containing the <title>, <head>, and the <body> as the essentials and various other tags can be added as and
when required for the document. '

In other words, we can say that XHTML is a markup language used to define well-formatted docurments with
the help of XML and HTML.

Converting HTML to XML

While editing HTML code, it’s very common to make mistakes. Now, with the help of HTML TIDY utility, you
can fix up these mistakes automatically. Dave Raggett’s HTML TIDY is a free utility, it also works very well on
the complex to read markup generated by HTML editors and conversion tools. HTML TIDY also helps you to
identify the areas on your Web page, which makes your pages more accessible to people with disabilities. In
HTML TIDY utility each item found is properly organized. For example, items are listed with the line number
and column so that you can see where the problem lies in your markup. The most common Web browsers such
as Internet Explorer and Mozilla Firefox understand the following code snippet (HTML document), but a
number of things prevent it from being well-formed XML:

<HTML>

<body>

<h1>Kogent</H1l>

<p>This is the first line.

<P>This is the second Vine.<brs>

This topic gives you the brief of global warmi ng

Sk fBODYS : :

In the preceding code snippet:
Q The html start-tag does not contain a corresponding end-ta 8.
D The tags enclosing the hl and body elements are not in a consistent case,
O The value of the IMG element’s SRC attribute isn’t quoted.
0 The br and IMG elements’ tags have no closing tags.

HTML TIDY utility maps this code to:

1052

Working with XML

<?xml version="1.0"7>

<!DOCTYPE html PUBLIC “-//w3C//DTD XHTML 1.0 Sstrict//EN"
"hrep://www.w3.org/TR/xhtm1 1/0To/strict. ded">

<html xmIns="http://www.wd,org/TR/xhtmi1">

<head>

<titles</titles>

</head>

<body>

<hl>Kogent</hl>

<p>This is the first Yine.</p>

<P>This is the second 1ine.</p>

This top1c gives you the brief of global warming

.

</body>

<htm]

Let's move further with]AXP which is Java API for XML processing.

Java API for XML Processing

Java API for XML Processing (JAXP) provides a high-level APl for writing vendor neutral applications that
process XML. JAXP is used to process XML data by using applications built on the Java platform. JAXP provides
an extra layer of adaptor around the vendor-specific parser and transformer implementations. With JAXP AP,
you can choose either Simple API for XML Parsing (SAX) parser or Document Object Model (DOM) parser to
parse an XML document using a stream of events or using DOM object representation.

JAXP also supports the Extensible Stylesheet Language Transformations (XSLT) standard, giving you control
over the presentation of the data and enabling you to convert the data to other XML documents or other formats,
such as HTML. JAXP also provides namespace support, allowing you to work with DTDs that might otherwise
have naming conflicts. The Table 27.5 lists the description of the packages used in JAXP:

Table 27.5: Packages in JAXP

javax.xml.transform Defmes the factory c]ass that you use to get a Transformer object. You then
configure the transformer with input (source} and output (result) objects, and
invoke its transform{) method to transform the objects. The source and
resultant objects are created using classes from one of the other three packages

javax.xml.transform.dom Defines the DOMScurce and DOMResult classes, which let you use a DOM as an
input to or cutput from a transformation

javax.xml.transform.sax Defines the SAXSource and SAXResult classes, which let you use a SAX event
generator as input to a transformation, or deliver SAX events as output to a SAX
event processor

javax.xml.transform.stream Defines the 5t reamSource and StreamResult classes, which let you use an [/O
stream as an input to or output from a transformation

JAXP allows the following sources for the XML document to be transformed by using XSL transformation:

g ADOMnode

O A SAX XML reader or input source

O A file, input stream, or reader

The following implementations are provided for the sinks, to which the result tree of transformation is written:
0 ADOM node

O ASAX content handler

O A file, output stream, or writer

1053

Chapter 27

The JAXP APIs

In Java, the javax.xml .parsers package contains the JAXP APls. This package provides two vendor-neutral
factory classes, SAXParserFactory and DocumentBuilderFactory, which are used to create instances of the
SAXParser and DocumentBuilder classes.

The factory classes allow you to plug-in an XML implementation offered by another vendor, without changing
your source code. The implementation you get depends on the setting of the properties of the
javax.xml.parsers.SAXParserFactory and javax.xml.parsers.DocumentBuilderFactory classes.

An Overview of the Packages

The XML-DEV and World Wide Web Consortium (W3C) groups define SAX and DOM AFls, respectively. As
discussed earlier, the javax.xml.parsers package provides common interface for SAX and DOM parsers. Specific
classes and interfaces of DOM and SAX APls are contained in the org.w3c.dom and org.xmisax package
respectively. Another package, javax.xml.transform, provides the classes of the XSLT AP, which allows you
transform XML into other forms,

SAX provides a mechanism to access XML documents in the event-driven, serial-access manner. The SAX AFI
reads and writes XML data to a data repository or the Web.

The DOM API considers XML document as a tree structure of objects. You can use the DOM API to manipulate
the hierarchy of objects of an XML application. The DOM APT is mostly used for applications where the data
needs to be retained, since DOM representation of the XML document resides in memory. This representation of
XML document can be accessed and manipulated by the user. To create the DOM representation of an XML
document, the DOM AP first reads the entire XML structure and holds the object tree in memory. The SAX apz
does not require an in-memory representation of the data; and is therefore, preferred for use in server-side
applications.

The XSLT API defined in the javax.xml.transform package helps you to transform the XML documents
into other document formats. In addition, you can even use it in conjunction with the SAX APIs to convert
legacy data to XML.

Document Object Model (DOM)

Document Object Model (DOM) presents the XML document as the tree-structure having the root node as the
parent element and the elements, attributes, and text defined as the child nodes. So, XML DOM defines the
standard way for accessing and manipulating XML documents. With the help of the DOM tree, the elements
containing the text and the attributes can be manipulated and accessed. The contents of these elements can be
modified, new elements can be created or the unwanted elements can be removed from the DOM tree. The most
important thing to be noted is that all the elements, their text, and their attributes are known as the nodes.

In the DOM structure, the entire document is considered as the Document node. The XML tag or the XML
element is recognized as the Element node. The text in XML elements is referred to as the Text node, the XML
attributes are considered as the Attribute nodes and the comments are considered as the Comment node. In the
DOM tree structure, the nodes have an hierarchical relationship with each other. The terms ‘parent’ and ‘child’
are used to describe the relationships between the nodes.

Let’s consider an example of an XML file and look at its DOM tree-structure. Here’s the code, given in Listing
27.7, for the product . xm1 file containing the data related to the various products (you can find the product.xml
file in the Code/XML/Chapter 27/%ML folder on the CD):

Listing 27.7: product.xml;
<? xml version="1.0" encoding="uTF-8"7>
<PRODUCY PRODID="P001"> o
<PRODUCTNAME>Barbie Do11</PRODUCTNAME> o _ _ _
DESCRIFTION>This is a toy for children in the. dge group below 35 vyears
</DESCRIPTION> : ' B
<PRICE>$24.00</PRECE> - '

1054

Working with XML

<QUANTITY>12</QUANTITY>
</PRODUCT>
<PRODUCT PRODID="P002">
<PRODUCTNAME>Mini Bus</PRODUCTNAME>

<DESCRIPTION>This is a toy for chﬂdren in the age gmup nf 5-10 years
</DESCRIPTION>

<PRICE>342. 00</PRICE> _
' <QUANTITY>6< ¥4 QUANTITY>
</PRODUCT>
<PRODUCT PRODID=" 9003 >
<PRODUCTNAME>CBF</PRODUCTWE>

<DESCRIPTION>This is .a toy for chﬂdren in . the age .group of 10-15 ' years
</DESCRIPTION> _ .

<PRICE>$60.00</PRICE>
<QUANT: ITY>21</QUANT ITV>
</PRODUCT>
</PRODUCTDATA>
In Listing 27.7, the <PRODUCTDATA> is the root element of the document. Smce all other elements are within the
<PRODUCTDATA> element, it is considered as the root element. The root element has three <PRODUCT> nodes
and an Attribute node named, PRODID, Each of the Element nodes has the Text node as well.

Figure 27.6 shows the DOM tree-structure for products. zml:

Root etament:
<PRODUCTDATA>
Parent
Chilg
Element: Attribute:
<PRODLCT> “PRODID”

|
I l |

lement: Etement: Elament: Element:
<PRODUCTNAME> <DESCRIPTION> <PRICE> <QUANTITY>

I

Taxt: Tex{: Text: Test
Barbig Dolt This is lhe toy for the 24 2
children in the age group
below 5 years

Figure 27.6: Displaying DOM Node Tree Structure

The DOM node tree structure, shown in Figure 27.6, has the root node <PRODUCTDATA> containing the child
node named <PROGDUCT>, The <PRODUCT> child node has four element nodes and an Attribute node. Each
Element node has the respective Text node, as shown in the Figure 27.6.

The DOM implementation for Java is defined in the packages, which are listed in Table 27.6:
Table 27.6: DOM Packages

javax.xml.parsers Contains the DocumentBuilderFactory and DocumentBuilder classes, which
collectively return an object that implements the W3C Document interface. You can
change the implementation of DocumentBuilderFactory by changing the System property
either from the command-line or override it when invoking the New Instance
method. This package also provides the ParserConfigurationException class to
report errors

org.w3c.dom Defines the DOM programming interfaces for XML (and, optionally, HTML) documents,
as specified by the W3C

1055

Chapter 27

The javax.xml.parsers.DocumentBuilderFactory class provides the DocumentBuilder instance based on Systern
property. The System property of this class chooses one factory implementation to generate the
DocumentBuilder instance. You can then create a Document object either by invoking the new Document()
methed of DocumentBuilder instance or by invoking the parse methods of the DocumentBuilder instance. The
Document object is internally represented as a DOM tree in the memory.

Other standards, such as JDOM and doméj, can perform minute tasks used to parse XML documents. This is
because these models consider each nede in the hierarchy as an object. Usually, these models are used with XML
documents that have elements that either contain text or element nodes. However, these models are not
designed to handle XML documents that have mixed content. Mixed content means that an XML element
contains both text and other sub elements.

The following code snippet shows the use of JDOM and dom4j standards:
. <addresshook> : ' o Cen

centrys

TolanamerSams</name> -
- <emai 1>Sams@domain</emails .
Cfentrys

</addressbooks T i s e T SR . B

If you use the JDOM or domd43 model API, you need to invoke the text () method to get the XML document

content after navigating to an element thal contains text. If you use the DOM APl during parsing, you must

verify the list of sub-elements and the text of the node even if that list contains only one item (a TEXT node).

Let us modify the previous code snippet to contain mixed content:
<addressbook> e N :
<entry>Sams _ 5 o
<email>sams@domaing/email>" . L.
<lemtrys oo e

</addressbook>" o -~ : :
In this code snippet, each <entry> tag contains text data and some other elements, Here, you first need to
navigate to an entry and then invoke the text () method to find the parent element, and finally process the
<email> sub-element. Let's move further and learn about using the DOM APL

Parsing XML Documents Using DOM

The code, given in Listing 27.8, shows how we are going to parse an XML file and create a word file from it (you

can find the ParsingUsingDOM java file in the Code/XML/Chapter 27/XML folder on the CD):
Listing 27.8: ParsingUsingDOM.jav
Codmportojava.io. ;o -
import org.w3c.dom.*;
import org.xml.sax.®;
import javax.xml.parsers.*;
import javax.xml. transform.*;
<import . javax. xpl.transform.dom. ;..
. Amport javax.ml.transform.stream.*;
. public class ParsingUsingbom{
. static.pubtic void main(String[] arg)throws
. IOException, SAXException, TransformerException. {
© .., BufferedReader bf = new Bufferedreader(new .
" InputStreamReader(System,in)); -
System.out.print("Enter ML Fite name: "y
. String xmlFile = bf.readtine();.
cFite File = new File(xmlFile);
if(file.exists{)){
DocumentBuilderFactory factory = DocumentBudi lderFactory.newinstance();

1056

Working with XML

bocumentBuilder builder = factory. newDocumentBu1]der(),

Document dac = builder. parse(xm]Flie).

TransformerFactory tranfact = TransformerFactory. newInstance(),

Transformer transfor = tranfact. newTransformer(),

Node node =dot . getdocumentElement(); :

Source src = new DOMSource(node); p
Result dest = new StreamResult{new F11e("ambr1sh do:")) RS
transfor.transform{src, dest); .

System.out. printin("File successfu]ly created'")

catch (ParserconﬁguratiénExc'epti'on e {
system.err.printinfe);
system.exit(l);
}
].
e]se{
. System.out. pr‘mt(File not found!™); .
3 :
3
} . . : .
The program prompts the user to enter an XML file name. Then the program parses it and creates a word file.
Tthe XML file, given in Listing 27.9, is used in this program (you can find the products.xml file in the
Code/XML/Chapter 27/XML folder on the CDY:

Listing 27.9: products.xml
<7xml version="1.0" encoch ng.-"UTF»s“'b R
<PRODUCTDATA> PR . L)
CRPRODUCT> . L. o L
<PRODID>P001</PROIJ}:D>]
<PRODUCI‘NAME>Barb1 e poll</ PRODUCI‘HAME>

<DESCRIPTION>This. is a toy for chi]dren in the'age group below:5
years </DESCRIPTIONS .

_<PRICE>$24.00</PRICE> .
<QUANT1TY>12</Q9A. I

</PRODUCTS
<PRODUCTS IR R
<PRODID>P002</PRODID> . .
<PRODUCTHAME>Min - u5</PRODUCTNAME> e
<DESCRIPTION>This {5 a toy For ch11dren 1n the-age group of 5- 10
years </DESCRIPTION> = . P
<PRICES$42 . 00<fPRICE>
<QUANTITY>6</QUANTIT¥> :
</PRODUCT> .
<PRODUCT>) Tl
<PRODID> P003</PRODID>

) <PRODUCTNAME>car</PROQUCTNAME> :
' - <DESCRIPTION>TRiS is'a. toy for ch1 'Idren ‘in tha aqe graup of 1D-15
years </DESCRIPTION>: . .. _ :
<PRICE>$60: 00</PRICES -
<QUANTITY>21</QUANTITY>
</PRODUCT> o
</PRODUCTDATA>
Let’s start discussing how the application works, First we create a Buf ferReader object for taking the name of
the XML file from the standard input device as keyboard. This is done as shown here:

pufferadréader bf = new BufferedReader(new InputStreamgeader(System Tn))‘,
system;out . print{"Enter ML Fite Name- S H

‘string xmiFiTe w:bf readtinet); : et T

File file = new File (xmlFile);

1057

Chapter 27

After this we use the DOM APl for parsing XML documents. We create an instance of
DocumentBuilderFactory class, which is provided by DOM APIL The DocumentBuilderFactory object
provides you a parser for parsing an XML document and produces a DOM tree structure. The
DocumentBuilderFactory object calls its newInstance static method to obtain a reference to itself. This is
done as follows:

bocumentBuilderfactory documentBuilderractory =

Documentgui TderFactory. newInstance(); - EEE
The next step is to create an instance of DocumentBuilder class. This class parses the XML document. An
instance of this class can be accessed by «calling its newDocumentBuilder method on the
DocumentBuilderFactory object:

DocumentBuilder documentBuilder = documentBuilderfFactory. newDocumentBuiider();
The next step obtains a DOM Document instance. The Document interface represents the whole XML document.
It refers the document root and has several methods for creating nodes, attributes, etc. Document object is
accessed by calling the parse method of DocumentBuilder class and passing the XML file to be parsed as
argument. After the document is parsed, a Document object is returned to the caller. This is done as follows:

Document doc = builder.parse(umlFile); . . o R S
The next steps create an instance of TransformerFactory class provided by JAXP. This class is used for
transforming a document to other formats. Here we are using it to create a word file. You can use this class as
follows:

Transformer. transfor = tranFact.newtransformer(y; - = - ..

Node node =doc.getDocumentElement(y; - - "L DU

Source src = new DOMsource(noded; - @ ¢

- Result dest = new: StreamResult{new Fi

Ctransforitransform{src, desty; EE B R
When you run this program it will parse the specified XML file and create a word file, The word file created by
this program is shown in Figure 27.7:

iD]F00) FR0DD)
TN arte Dot [FFOGETRRES]

PTM This 15 8 to For shuldrest un the age goup bebow 5 yrars EEZZDTING}
1524 o0 PR

Sganitire] | [T

Figure 27.7: Document Showing XML file in Word Format

After discussing about the DOM APIs for XML parsing, let's move on to other APIs used for parsing XML
documents, i.e. is SAX.

Simple API for XML (SAX)

The SAX refers to the Simple API for XML, which provides a mechanism to read data from an XML document.
As discussed previously, DOM is also used to read data from an XML document. Thus, SAX parser proves to be
an alternative to the Document Object Model (DOM). In technical terms, SAX is the serial access parser API for
XML.

1058

Working with XML

The SAX parser is the Event Driven parser. The user defines the number of callback methods which would be
called when an event occurs during parsing. The following is the list of SAX events:

@ XML Text nodes

O XML Element nodes

b XML processing instructions
0 XML Comments

These events are fired at the start and end of each of these XML node, instruction or comments whenever they
are encountered. For example, at the start and end of a Text node, the XML Text nodes event will be fired; or
XML Comments event will be fired at the start and end of comments. The most important thing to note is that
SAX parsing is unidirectional. Unidirectional means the previously parsed data cannot be read again, until the
parsing operation is started again.

Following code snippet shows an example prodetail.xml that shows how parsing is done by the SAX parser:
<? Xml version="1.0" encoding="uUTF+8"7>
<PRODUCTDATA> '
<PRODUCT . PROBUCTID="P001">
<PRODUCTNAME>Gone with the wi I'Id(/PRODUCTNAME)

<DESCRIPTION> The backdrop of this book is the Amef'1can Civil
war</DESCRIFPTIONS i

<PRICE>25, 60</PRICE> e
<QUANTITY>35</QUANT ITY>
" </PRODUCTS -
</PRODUCTDATA>

The prodetail.xml is the XML document prov1dmg the detaﬂs of the products. The SAX parser fires off a
series a XML events as it reads the prodetail.xml document. These events are fired in following sequence:

O XML Processing Instruction, with attributes version equal to ‘1.0’and encoding equal to ‘UTF-8".

XML Element start named PRODUCTDATA.

XML Element start named PRODUCT, with an attribute PRODUCTID equal to the value P0U1

XML Element start named PRODUCTNAME.

O 0o o

XML Text node with data equal to “Gone with the Wind’ (note that text processing with regard to spaces
can be changed).

XML Element end named PRODUCTNAME

XML Element start named DESCRIPTTON.

XML Text node with data equal to ‘The backdrop of this book is the American Civil War’.
XML Element end named DESCRIPTION,

XML Element start named PRICE.

XML Text node with data equal to ‘25.00°.

XML Element end named PRICE.

XML Element start named QUANTITY.

XML Text node with data equal to ‘35°.

XML Element end named QUANTITY.

XML Element end named PRODUCT.

O XML Element end named PRODUCTDATA.

In this way, the SAX Parser generates the sequence of events while parsing. DOM has the formal specification,
but there is no formal specification for SAX. Since SAX is based on the nature of event-driven processing, the
processing of the XML document would be done faster as compared to DOM-style parsers. .

ODoo0D o000 o0DDboC e o

1059

Chapter 27

The quality of memory which a SAX parser uses in functioning is smaller as compared to that of the DOM
parser. In other words, the DOM parser needs the entire DOM-tree structure of the document into the memory,
so that the amount of memory used by the DOM parser depends upon the size of the input data,

The major drawback of the SAX parser is that, unlike XSLT or XPath, SAX parser cannot access any node at
anytime. Instead, the SAX parser can read the parsed data again only when the parsing is done again.

The Table 27.7 lists a summary of the key SAX APls:
Table 27.7: The SAX API

ContentHandler This interface provides methods, such as startDocument(), endDocument{},
startElement (}, and endElement {} which are invoked to receive the notifications
of beginning, end of document and beginning and end of element respectively

DefaultHandler This class is default class for 5AX2 event handlers such as ContentHandler,
ErrcrHandler, DTDHandler, and Ent i tyResolver interfaces

DTDHandler The DTDHandler interface allows you to receive notifications of basic DTD related
events
EntityResolver The EntityResolver interface is a basic interface for resolving entities. It has

resolveEntity () method which resolves external entities

ErrorHandler This interface provides error(), fataiFrror, and warning methods that are invoked in
response to occurrence of recoverable error, non-recoverable error, and warning
respectively. To ensure the correct handling, you'll sometimes need to supply your own
Error handler to the parser

SAXParser The SAXParser class provides several types of parse () methods. In general, you

pass an XML data source and a DefaultHandler object to these parse() methods
, which process the XML and invokes the appropriate methods on the handler object

SAXParserFactory A SAXParserFactory instance creates an instance of the SAXParser class based on
System property of SAXParserFactory class

SAXReader The SaXParser wraps a SAXReader, It is the SAXReader that camries on the
conversation with the SAX event handlers you define

The SAX parser is defined in the packages listed in the Table 27.8:

Table 27.8: Packages of SAX API|

javax.aml.parsers This package provides SAXParserFactory class, which returns the SAXParser
instance and exception classes for reporting errors

org.xml.sax This package provides SAX interfaces

org.xml.sax.ext This package provides SAX extensions that are used for doing more sophisticated SAX
processing —for example, to process a Document Type Definition (DTD) for a file

org.xml.sax.helpers This package provides the helper classes that make SAXParser instance easier to use SAX
APL

Let’s take an example of how to parse XML document using SAX.

Parsing XML Docurnents Using SAX

Let’s parse an XML file and then display its contents. The XML file used in this case is employees . xml. Here's
the code, given in Listing 27.10, for ParsingUsingSAX program (you can find the files, named employees.xml
and ParsingUsingSAX java in the Code /XML /Chapter 27/xML folder on the CD):

1060

Working with XML

Listing 27.10: ParsingUsingSAX java
imy; rt'jnva 19-:0£xceptann;

_;.SAXParser sp = spf newSAXParser(), g o ' - B
- sp. parse(“employees xml", thxs},. I

ring’ uri 5tr1ng 1acaTName, Str1ng quame,
SAxExceptmn {

equaiszgnorecase("emptoyee")) {
e Emp?oyee(); :

‘if(qﬂm ‘aqual srgnorecase(" Emp'i oyee ")) {
1061

Chapter 27

myEmpls.add (tempEmp) ; :
}else if (gname. equa1sIgnoreCase("Name“)) {
_ tempEmp.setName(tempvall); . .
o Yelse iF (gName. equa1sIgnoreCaseC"Id")) {
i tempEmp. setId(Integer, parselnt(tempVaD). '
}else 1f {gName . equalsIgnoreCase("age")} {)
tempEmp. setAge(Integer.parsernt(tempVa1});

pub c Stat1c void main(Str1ng[] args){ L e
ParsingusingSax: spe = neu Parswngusingsax(). -
.spe runﬁxamph().

Listing 27.10 also uses a Java Bean employee.java for storing the result. This file contains getter and setter
methods for employee’s property. These properties are specified in the XML file.

Here’s the code, given in Listing 27.11, for Employee.java (you can find the Employeejava file in the
Code/XML/Chapter 27/XML folder on the CD):

Listing 27.11: Employee.java
class Employee .

:._}-pub ic Emn1oyee(){

public Emp1oyee(5tring name, int
this. haie = name,
this.age = age}. .~
: ‘_tlns_'rd “wdidy

; this tybe :'type;_

o -
__f'puhTic int, getAge() s _

int gttxd(} { i
eturn id, 4R

¥
pub1ic Str1ng getNalE() {'“
return name;

1062

Working with XML

IThd

ingBuffer sb = new- .StﬂmngBu'Ffar()..' .
__append{"Emp'lo 113 Betaﬂs - \n"), Lo

The XML file for employees.xml is given in Listing 27.12 (you can find the employees.xml file in the
Code/XML/Chapter 27/XML folder on the CD):
Listing 27.12: employees xml

PUTF-8725

Now set the xerces.jar and xml -apis.jar flles in your classpath and complle alI the precedmg]ava files.
After compilation of all these Java files, run the ParsingUsingSaX file. The detail of employees stored in the
XML file gets displayed.

While parsing XML documents using SAX, we know that SAX provides several default event handlers.
Therefore, we need to extend our class from the DafaultHandler to provide event handling code in our
appIication'

Now create a SAXParserFactory ob]ect by callmg its stahc newInstance method Next create a SAX parser
instance by calhng newSAXParser method on the factory ob]ect Tl'us is done in the followmg manner:

SAXParserisp :fr_spi‘.;mnxpnrsar(}, SRR
Now pass the XML document to this parser mstance When the parsing starts, the parser calls the
startElement method, whenever it encounters an element in the XML document. The method retrieves the
namespaces —simple name, qualified names and list of attributes — as parameters as shown in the following code
snippet:

pub¥E

EBpERD = new Emp'tayee(), e
1063

Chapter 27

tempEmp.setType(attributes,getvalue("type’));
} EEE .
Here, the qualified names are checked with Employee. If it matches, then the new Emplovee object is created
and its type is set by the value of type attribute parsed from the XML,

The parser now calls the endR1ement method. This method is called whenever it encounters an element’s end.
The qualified names are again checked as shown here:
public void endelement(String uri, String TocaliName, String gName) throws

SAXException {
if(gName.equatsignorecase("Employee™)) { T
myEmpls.add(tempEmp) ; :

}else if (quame.equalsIgnoreCase(”Name")) { -
tempEmp, setName(tempval); :

telse if (qname.equalsIgnerecase("Id")) { L
tempEmp.setId{Integer.parselnt(tempval));

}else if (qName.equa1sIgnor_'ecase(‘-'Age‘_')}-'{ I
tempEmp. setAge(Integer.parseInt(tempvall));-

}
Now consider the following function: _
pubiic void characters(char[] ch, int start, int Tength) throws -
tempval = new String(th, start,length); -
The characters method is an event handler and it is called by the parser whenever it encounters an element data,
Because this data is in character format, the method accepts character array, offset, and length as its parameters,

Extensible Stylesheet Language Transformation (XSLT)

XSLT stands for extensible Stylesheet Language Transformations and it is used for transforming the structure
and content of XML document into the required output. XSLT is used to transform XML documents into other xXMI,
documents. XSLT processors parse the input XMI, document, as well as the XSLT stylesheet, and then process the
instructions found in the XSLT stylesheet, using the elements from the input XML document. During the
processing of the XSLT instructions, a structured XML output is created. XSLT instructions are in the form of XM,
elements, and use XML attributes to access and process the content of the elements in the XML input document.

The main purpose of using ¥5LT is to convert the XML data into human readable format. It means that XSLT is
used for displaying XML data in other formats, such as HTML, PDF, etc. The X3LT includes two steps for
transforming an XML document into the required outputs. These steps are as follows:

O Datais converted from the structure of an XML document to the desired output structure.

O The new structure is displayed in the required format, such as HTML, PDF, etc.

ASLT is rarely discussed without a reference to XPath. XPath is a separate recommendation from the W3C that
uses a simple path language to address parts of an XML document. Although XPath is used by other W3C
recommendations, there is hardly a use for XSLT that does not involve XPath. Generally speaking, XSLT
provides a series of operations and manipulators, while XPath provides precision of selection and addressing,

The XSLT APls for Java are defined in the packages listed in Table 27.9:

Table 27.9: Packages of the XSLT

API
Al s = i -
It defines the TransformerFactory and Transformer classes, which you use ;
to get an object required for transformations. After creating a transformer |
object, you invoke its transform{) method, passing an input (source) and |

AR

Javax.xml.transform

Working with XML

Table 27 9 Packages of the XSLT API

outpuf (result) s parameter

javax.xml.transform.dom These are classes to create input (source) and output (result} objects from a DOM

javaxz.xml.transform.sax These are classes to create input (source) objects from a SAX parser and output
(result) objects from a SAX event handler

javax.xml.transform.stream These are classes to create input {source) objects and output (result) objects from an ;
1/O stream H

Let’s now get ready to take a look at an example of using XSLT to transform a very simple XML document.

The code for this example is given in Listing 27.13, (you can find the productxml file in the

Code/XML/Chapter 27/XSLT folder on the CD:

Listing 27.13: product.xml
<7xm1 version="1.0" encoding="uTF-8"7>
<?xml-stylesheet type=" text/xﬂ" href="pr‘odnct *E1"7
<PRODUCTDATA . .
- <PRODUCT> -
<PRODID id="p00OL" ></pnoom> N .
<PRODUCTNAME>Barbie ‘D011 </PRODUCTNAME>

<DESCRIPTION>This s a toy fm‘ children in the age group beiow 5

years </DESCRIPTION>.
<PRICE>240.00</PRICE>
<QUANTITY>12</QUANTITY>
</ PRODUCT>

<PRODUCT> : .
<PRODID 'ld-"POOZ" ><fPRODID>
<PRODUCTNAME>Mi ni 8

<DESCRIPTION>ThiS
yedrs </DESCRIPTION>

<PRICE>420.00</PRICE> .
<QUANTITY>6</QUANTITY>
</PRODUCT>

<PRODUCT>
<PRODID i d-"P003 " ></PRODID>
<PRODUCTNAME>Ca r'-:/P‘RODUCTNAME}

<DESCRIPTION>Th1s is a toy for chﬂdren 1n the age group of 10-15

years </DESCRIPTIONs: .
<PRICE>600. OO</PRICE>
<QUANTITY>21</QUANTITY> :

</PRODUCT>

<PRODUCT>
<PRODID 1d="P004" ></PRODID>
<PRODUCTNAME>ATr Plane</PRODUCTNAME>

<DESCRIPTION>This is a toy for children in the age group of 08-15

years </DESCRIPTION:
<PRICE>700.00</PRICE>
<QUANTITY>25</QUANTITY>
</PROBUCT>
</PRODUCTDATA>

dren.n.the age group of 5-10

The code given in Listing 27.14 shows the XSLT stylesheet used in this example to perform transformation (you

can find the product.xsl file in the Code/XML/Chapter 27/XSLT folder on the CD):

1065

Chapter 27

Listing 27.14: product.xsl
<?xmi version="1.0" encodi ng="150-§859-1"7>

. <xslistyleshept versions"1.0" - o TremER
xmlns ixsT="http: //www.w3.org/1999/xsL /Transform™s ..
«xslitemplate match="/"> : - :
Ty _

coosbody» o
<h2sProduct Details</h2> T
colctablecborderaits o o e
<tr’ bgcalor="#CCCEFF"S " R
~<th align="Teft">Product Name</th>
<th: align="left">Quantity</th>
cicth alighe"teft">Pricee/ths - =

<xs1:for-each select="PRODUCTDATA/PRODUCT"S
<td><xs1ivdiue-of select="PRODUCTNAME"/></ d>

L <tdvexs)ivalue-of select="QUANTITY"/></tdh
v <tdeexslivalue-of select="PRICE"/

i refxs1 sty leshest
When you open the prod

Done M Computer | Protected Moder OFF | K 1008 %

Figure 27.8: The product.xml Displayed In IE
In this example when you lead the XML document (product . xml) in your browser, the browser will recognize
the following line:
<Txiel-stylesheet type="text/xs1" href="product.xs1"7?> : e
This line simply tells the browser that this XML file is using an XSLT stylesheet named product . xs1. Let's now
discuss more about XSLT stylesheet.

XSLT Stylesheet

An XSL Stylesheet is also an XML document (Listing 27.14 shows you an example of simple XSL Stylesheet), An
XSL Stylesheet contains many XSLT elements and XSLT functions. An XSL Stylesheet begins with either the
stylesheet elements or with transform. Both these elements do the same thing. The most important element
in the XSL Stylesheet is the template element. Let’s move ahead to discuss more about XSL elements and
functions, which are generally used.

1066

Working with XML

The XSLT elements define the structure of stylesheet. The most commonly used XSLT elements are as follows:
<xsl:template>
<xsl:apply-templates>
<xshimport>

<xslapply-imports>
<xslicall-template>
<xsl:stylesheet> or <xsl:transform>
<xslinclude>

<xsl:element>

<xsl:attribute>

<xslattribute-set>

<xsl:value-of>

Do 0ocoo0ooOoaeoarn

The <xsi:template> Element
This element defines a template for producing output. It is a top-level element. It contains rules to apply when a
specified node is matched against a pattern or explicitly by name. It uses a match attribute for defining the
pattern. Matching against a pattern makes use of the match attribute of the <xsl:template> element. For
example, match ="/ defines the whole document as it matches the root element.

The pattern mentioned in the match attribute may not include a variable reference. Therefore, circular references
are avoided. Similarly, if the <xs1:template> element has a name attribute like the one that follows:
<xsl:template. name="PRODUCTNAME™ 3 . USSP SR LR Nt SO RO
then it can be accessed in the following manner:
aslicall-template name="PRODUCTNAME" > R B L E TR PO IR RN
Notice that the name attribute of both <xsl:template> and <xsl:call-template> must match exactly. An
<xsl:template> element must have either a match attribute or a name attribute or both. When both the
match and the name attributes exist, then, in that case, <xsl:template> element can be called by either
<xsl:apply-templates> or <xsl:call-template>. . :

Syntax: <xsi:template>
The syntax of <xsl:templ

Attributes
The attributes used by <xs1:template> element are listed in Table 27.10.

i Table 27.10: Attribu sl:template>

PR

“Tar

match (optional) Pattern It is a pattern that defines which nodes are eligible to be processed. If this
attribute is absent, then the name attribute must be present

name {optional) Name It specifies a name for the template. If this attribute is absent, then there must
be a match attribute

priority (optional) Number 1t is a number (positive or negative, integer or decimal) that denctes the
pricrity of this template, and is used when several templates match the same
node

mode (optional) List of mode It specifies the mode or modes to which this template rule applies. When

names. <xsl:apply-templates> is used to process a set of nodes, the only

templates considered are those with a matching mode

1067

Chapter 27

The <xsl:appiy-templates> Element
This element defines a set of nodes to be processed and causes the system to process them by selecting an
appropriate template rule for each one. The <xs1 : apply-templates> element is an instruction, which is used
within a template. It selects a set of nodes and processes each of them by finding a matching template. An
<xsl:scrt> element may be nested within an <xs1 :apply-templates> element. f <xsl:sort> element is
nested within <xsl:apply-templates>, then it determines the order in which the nodes are processed,
otherwise the nodes are processed in document order.

Synitax: <xsi:apply-templates> '
The syntax of <xsl: apply-templates> is as follows:
<xs1:apply-templates select="expression" mode="mode” >

<l i Content: (xsl:sortixsl:with-param*) -- .- >
</xsT:appiy-templates>
Altributes

The attribute used by the <xs1: apply-templates> element is listed in Table 27.11,

Table 27.11: Attributes of <xsl:apply-templates>
e s o

H H
i gt s B

select (optional) expression It specifies the nodes to be processed. If omitted, all the children of the current :
node are processed , b

s ;.u\j

mode (optional) name i Template rules used to process the selected nodes must have a matching 1
; mode. If omitted, the default (unnamed) mode is used §

Using <xsi:template> and <xsi:apply-templates>
In this example, we’ll give you an idea about how you can use these two elements —<xsl:template> and
<xsl:apply-templates>—in your applications. Let’s consider the xMI, document given in Listing 27.13.

The code, given in Listing 27.15 shows how the XSLT stylesheet is applied to perform transformation (you can
find the xslapplytemplates.xsl file on the CD in the Code / XML/Chapter 27/XSLT folder on the CD):

Listing 27.15: xslapplytemplates.xs]
<Pxml version="1.0" encoding="IS0-8859-1"7s
<x51istylesheet versions"1.0" o
xm]ns:x;]ﬁ"http;{{HWW,HB;0rg/1999fXSL£Iransform“> Ci

<xsT:template match="/"»
<html>

<title>XSLT ELEMENTS</title>
<hody>

<h2>Product Details</h2>
<xs1:apply-templates/s>

< REm Y
</x§1:temp1ate>"r

<xs):template match="PRODUCT">

<p> S
<xsl:appiy-templates sel eCt="PRODUCTNAME" />
<xs1:apply-templates select="PRICE"/>
<«si:iapply-templates select="QUANTITY" />

</p>

</xsT:témplatés

éks?:femplate’matﬁh#“PRODUCTNAME">" o
PRODUCT. NAME: <span’ styTe="color #FF0000">

1068

Working with XML

<xsl:value-of select="."/>

</xs]:template>

<xs1:template match="PRICE"> "
PRICE:
<xst:value-of select="."/>

</xs1:template>

<xs]1:template match="QUANTITY">

QUANTITY:

<xsl:valve-of select=","/>

</xsT:tempiate>

</xs1:stylesheet> .
You have to change the <xml-stylesheet> in the product.xml file so that it points to this XSLT stylesheet, as
shown in the following code line:

<?xml-stylesheet type="text/xs1" href="xslapplytemplates.xs]1"?>
In Listing 27.15, the <xsl:template> element matches the root eclement and calls the <xsl:apply-
templates> element for each node set. The <xsl:apply-templates> selects the ‘PRODUCTNAME’,
‘PRICE’, and ‘QUANTITY’ for the matching ‘PRODUCT’ node specified in <xsl:template> element. When
you open the product. xml file in IE, it will be transformed in HTML, as shown in Figure 27.9:

8 SSUT R ERENTS - Viindains btermet Exploces

*Linky 7

U GH) XSLT ELEMERTS K e () v am o ooPage v Teck v

Product Details

! PRODLUCT NAME Barbiz Doll
PRICE 24030
QUANTITY 12

PRODCT NAME: M id Bus
PRICE 420 00
QUANTITY: &

PRODUCT NAME Car e
PRICE: 604 00 '
QUANTITY 21

PRODUCT NAME. Air Plans
PRICE. =0
QUANTITY: 23

Bene M Computer | Protected Mode: OFf A 1005 -

Figure 27.9: Using <xsi:template> and <xsl:apply-templates>

The <xsl:import> Element

This element is the top-level element used to import the contents of one stylesheet into another stylesheet. The
importing stylesheet has higher precedence than the imported stylesheet. It means that the XML document is first
transformed using the importing stylesheet, but if importing stylesheet is unable to perform a transformation
then the imported stylesheet will perform the transformation, if it can. The <xsl:import> element is the first
element among the top-level elements. If it is present in a stylesheet, then it needs to proceed first from any other
top-level element. The <xsl:import> element causes the stylesheet at the location specified in its href
attribute to be imported. Thus, to import the InsertStylesheet.xsl stylesheet we could use the
<xsl:import> like this (assuming that InsertStylesheet.xsl was situated in the same directory as the
importing stylesheet):

1069

Chapter 27

<xs1:iimport href="InsertStylesheet.xs1"/> S
The value of the href atiribute may be a relative URL, as shown in the previous example, or an absolute URL. If
the URI is relative then it is interpreted in the light of the base URI of the importing stylesheet. The file reference
in the value of the href attribute must be a valid XSLT stylesheet. The top-level <xsl:stylesheet> element
of the imported stylesheet is, in effect, discarded and the top-level children of the discarded element are inserted
into the importing stylesheet in place of the <xsI:import> element.

Syntax: <xsl-import>
The syntax of <xsl:import> is as follows:
<xsl:import href="URI"/ >
Attributes
Table 27.12 lists the attribute used by this element:

Table 27.12: Attribute of <xsl:import>

It speCIers the URI of the 1mp0rted stylesheet

The <xsl:call-template> Element
This element calls a named template. We mentioned earlier that the <xsl:template> element may have a
name attribute and that such a template can be called by name. The <xsl:call-template> element is used to
do that. The <xsl:call-template> element has only one attribute, the name attribute, which is a required
attribute. The name atiribute of the <xsl:call-template> element and the name attribute of the
<xsl:template> element must match. An <xsl:call-template> element may have one or more nested
<xsl:with-param> elements.

If you have a template like this:
sxxslitemplate name="CalledTemplate"s .. .= .
<te-The works o_f the. tempTate goes here e
</xsTtemplates’ - s
then you can call that template using the followmg code
<xsticall-template name=""Callediemplate”/> .
Or, if you also wish to pass a parameter, it would take this general form:
xsticall-template name="CalledTemplate"s
<xs7:with-param fame=" 10" se'[ect="5tudentID"/>
</xs1icall-remplates> : .
Since the parameter is passed to be evaluated, there would need to be a corresponding <xsl:param> element
within the <xs1:template> element, like this:
<xs]:template name="CalledTemplate”s
“exstiparam name="1Ip"/>
<1<=The rest of the works of the temp‘late goes here;
</xs51:template> : s .
The <xsl:call-template> element can be used recurswely to process a list, either a node set or a list of
separated strings.

Syntax: <xsi:call-template>
The syntax of <xsl:call-template> is as follows:
<x51:call-tenplate name ="templa'tenme"’->-) L
prighan b CONTEMTE. XST1param® <+ omom DLonTT e
~wfxsTicall<templates : e
Altributes
Table 27.13 lists the attribute used by this element.

1070

Working with XML

R A5 R

§ Table 27.13: Attrlbute of <xsl: call-template>

name templatename It specifies the name of the template to be called

Using <xsl:call-template>
For an example, let’s consider the XML document given in Listing 27.13. Here's the code, given in Listing 27.16,
for applying the XSLT stylesheet to perform transformation (you can find the xslcallternplates.xsl file in the
Code/XML/Chapter 27/XSLT folder on the CD):
Listing 27.16: xslcalltemplates.xsl
<?xm] version="1.0" encoding="I50-8859-1"7>
<xs1:stylesheet version="1,0" '

xmins:xst="http://www.w3. org{l&ggleL/Transform E S
<xs1:template match-“j"

<html>

o | ﬂez-xsrr ELEmENTs</t1 t‘iea»
<body> B _
<h2>product Detaﬂs<jh2>

<xs¥: ca‘l]-temp1ate name"'PRoDucr"b i
</body> - e :
</htmls>. . T

_</xﬂ temp'late> S

1 ATA/ PRODUCF i

- atdvexsls a'lue—of selects “Pmucmms"/></td>
<td><xsT:value-of select="QUANTITY"/s</td> - =
<td><xsT va]ue—of select*“PR_ICE"[>_<_/td_:_+_</_tr>_'-_ C .

</tab'le> -

</xs1itemplates .

</xs1: sty1esheet> : i C C .

You have to change <xml- stylesheet> in product xml file so thatit pomts to th.ts X5LT stylesheet as
shown in the following code:

<?xml-stylesheet type="text/xsl” href="xslcalltemplates.xs1"?>

In this stylesheet, the <xsl:template> element matches the root element and calls the <xsl:call-
template> element with tempiate name ‘PRODUCT” for each node set. The <xsl:call-template> calls the
template ‘PRODUCT" that selects the ‘PRODUCTNAME’, ‘PRICE’, and QUANTITY" for the matching
‘PRODUCT’ node specified in <xsl:for-each> element. When you open the xML file in IE, it will be
transformed into HTML as shown in Figure 27. 8.

The <xsl:stylesheet> and <xsl:transform> Elements
These elements are the outermost elements of the stylesheet. Both of them are used to define the root element of
the stylesheet.

1071

Chapter 27

Syntax: <xsi:stylesheet>
The syntax of <xsl:stylesheet> is as follows:

<xs1: - stylesheet id ="xminame” version ="number” extension-element-prefixes
= “namespacelists exclude-result-prefixes = “namespacelist” »
L A Content: xsl:param* -- -—- >

</xs51:stylesheet>

Syntax: <xsi:transform>
The syntax of <xsi:cransform> is as follows:

<xs51: transform id ="xmiiname” version - ="number” extension-element-prefixes
= “namespacelists exclude-result-prefixes = “pamespacelist” >
<l - e Content: xsl:param* -- ——- >
</%sT: transform > :
Altributes

The attributes used by these elements are same and are listed in Table 27.14:

Table 27.14: Attributes of <xsi:stylesheet> or <xsl:transform>

id It is an identifier used to identify this
(optional) <xsl:stylesheet> element whenitis
embedded in another XML document

version Number It defines the version of XSLT required by
(mandatory) this stylesheet. Use 2.0 for a stylesheet that
requires XSLT 2.0 features or 1.0, if you
want the stylesheet to be portable between
XSLT 1.0 and XSLT 2.0 processors

extension-alement-prefixes Whitespace-separated list of It defines any namespaces used in this !
(cptiocnal) Namespaces stylesheet to identify extension elements §

ol
exclude-result-prefixes Whitespace-separated list of It defines namespaces wused in this !
(optional} Namespaces stylesheet that should not be copied to the !

output destination, unless they are actually
used in the result document

The <xsl:include> Element
This element is a top level element, i.e. an element that comes in the starting of XML stylesheet, which is used for
including the contents of one stylesheet within another. The <xs1:1include> element has only one attribute,
the href attribute, which is a required attribute. Thus, if we want to include a module called Included. xs1
then we can do so by using the following code, provided the ModuleToBeIncluded.xsl is in the same
directory as the stylesheet within which the <xs1: include> element exists:
<xst:iinclude href="Included.xs1"/>

The difference between <xs1:import> and <xsl:include> is that, with <xs1: include>, the semantics of
the included stylesheet are not changed by the process, whereas an imported module will be wholly or partly
overridden by similarly named templates in the importing stylesheet, if such templates are present,

Syntax; <xsi:include>
The syntax of <xs1:include> is as follows:
<xsTrinclude href="ur1"/ »

Attributes
Table 27.15 lists the attribute used by this element:

1072

Working with XML

i\mma o

Table 27. 15 Attrtbute of <st |nclude>

Nanua

href

It specifies the URI of the included stylesheet

The <st eIement> Element

This element ts used to create an Element node. The name of the element that is created is determined by its
name and namespace attributes. The name attribute gives the qualified name for the element and the
namespace attribute gives the namespace URI for the element. The purpose of the <xs1:element> element is
to cause an Element node to be created in the result tree.

There are several techniques available, which can be used to add attributes to such a new Element node. For
example, the use-attribute-sets attribute of the <xsl:element> element itself can be used for this
purpose. Alternatively, you can use the <xsl:attribute>, <xsl:copy>, or an <xsl:copy~of> element to
add attribute to a new Element node.

Syntax: <xsi:element>

The syntax of <xsl:element> is as follows:
<xsl:element name = “name” namespace ="URI” use-attribute-sets = “"namelist™ s -
< | == -+ Content:template -- -- > - :
</xs1:element>

Altributes

Table 27.16 lists the attributes used by <xsl:element> element:

3

Table 27.16: Atfributes of <xsl:element>

name {mandatory) Name It is the name of the element to be generated

v o
namespace {optional) URI of namespace It is the namespace URI of the generated element
use-attribute-sets Whitespace-separated list of It is the list of named atiribute sets containing
(optional) attribute-sets attributes to be added to this output element

Using <xsi:elernent> Element

A typical use of the <xsl:element> element would be in an XML to XML transformation. It is used to create an
element in the output document for an attribute in the source document. Here's the code, given in Listing 27.17,
that shows the XSLT stylesheet, if we consider the source document given in Listing 27.13 (you can find the
xslelement.xsl file in the Code /XML/Chapter 27/XSLT folder on the CD):

Listing 27.17: xslelement.xsl
<7xml version='1.0"7»
<xs1:stylesheet version="1.0" S i
xmins:xsl="http: £ wen w3.orgleQfosr.fTraﬂsfom"a-.
<xs1:output method="xm1"™ indent="ves"/> :
<xsl:template match="/">
<PRODUCTDAT A
<PRODUCT>
<xs1:for-each select="PRODUCTDATA/PRODUCT/PRODID/EB*' >
<xs7:element name="{name()}">
<x51:value-of select=". "/>
</xst:elements>
</xst:for-eachs’
</PRODUCT>
</PRODUCTDATA> .
</xs1:template> .
</xs1:stylesheet>

1073

Chapter 27

You have to change the <xml-stylesheet> in the product.xml file so that it points to this XSLT stylesheet, as
follows:
C<?xml-stylesheet type="text/xsT" href="xslaTement,xs1"?>
Listing 27.17 will produce a restructured XML document with elements in the output replacing attributes in the
source document:
<?7xml. version="1.0" encoding="UTF-8"7?>
 <PRODUCTDATA> . . L S
. <PRODUCT> - .
<id>P00L</id>
<id>P002</id>
<it>PO03</id>
<id»PO04</id>
</PRODUCT> -
</PRODUCTDATA> . - : e ST
Basically, what the template does is that it takes each attribute on the <PRODID> element in the source
document and creates a correspondingly named element in the output document, while inserting the value of
the former attribute as the content of the newly created element.

The <xsl:attribute> Element
The <xsl:attribute> element is used to create attribute node and add it to the element.
Syntax: <xslattribute>
The syntax of <xsl:attribute> is as follows:
i<xsl:atrribute name. = “nameofattri
comdeeslan Contentitemplate -- - >
Creriefasbiattribates s D
Altriputes
Table 27.17 lists the attributes used by this element:

Table 27.17: Attributes of <xsl:attribute>

name (mandatory)

Name

sl

o 3
It is the name of the attribute to be generated

namespace (optionall

URI of namespace

It is the namespace URI of the generated attribute

The <xsl:attribute-set> Element

This element is one of the starting elements of an XSL stylesheet and is used to define a named set of attributes
names and values. The resulting attribute can be applied as a whole to any output element.

Syntax: <xsl: attribute-set>

The syntax of <xsl: attribute-set> isas follows:

Ssxsliattribit-set name-= “name” usecatrribug
' emplave —— -~ 5

o s Content st
ksl rattribte-sets
Altributes

Table 27.18 lists the attributes used by this element:

5, 5

name {mandatory)

Table 27.18: Attributes of <xsl:attribute-set>

It is the name of the element to be generated

use-attribute-sets
{optional)

Whitespace-separated list of

It is the list of named attribute sets containing

1074

Working with XML

'Table 27.18: Attributes of <xsl:attribute-set>

§ attribute-sets ; attributes to be added to this output element

The <xsl:value-of> Element

This element is mostly used for writing text to a result tree. It is used for constructing a Text node and extracting
the value of a node.

Syntax: <xsi: value-of>
The syntax of <xsl: value-of>isas follows:
<x51:value-of
select = “expression” _
disable-output-escaping = “yes|no”/ >
Attributes
Table 27.19 lists the attributes used by this element:

Table 27.19: Attributes of <xsl:value-of>

select expression It is the expression given in XPath expression language

(required} form that is used to specify which nodes to extract the
value from

disable-output-escaping Yes The “Yes’ value specifies that the special characters (such

{optional) No as <) wili be displayed as it is. The ‘No' value specifies
that the special characters (such as <) will be displayed
as &1t; defaunit value is No

XSLT Functions

There are over 100 built-in functions in XSLT. These functions also include XPath functions. However, in case of

XSLT, there are the following built-in functions:

@ current () —This function is used for accessing the current node.

O document {} —This function is used for accessing external XML document.

O element-available () —This function checks whether a particular element is present under the XSLT
Elements.

O format-number () —This function formats the specified number in a specified format.

O function-available (} —This function checks whether a particular function is present under the XSLT
functions or not.

O generate-id () —This function generates a string that uniquely identifies a node.

O key () —This function is used to find the nodes with a given value for a named key.

O system—property () —This function returns the information about the processing environment, like XSLT
version, X5LT Processor’s vendor name, and their URL '

Using XSLT Elements and Functions
Let's build a small application using XSLT functions. In this application, we are using two XML files—
product . xml file (given in Listing 27.13) and emp . xm1. The emp . xm1 file is as shown here:
<7xm] version="1.0" encoding="150-8859-1" 7> LT e
<Employees> . T o Tl Tl i
. <FirstNamesAmbrish</Firsthame>
<M1 ddleName>Kunar</Middlename>
<Lastnamexsingh</LastNames "~ - °

1075

Chapter 27

<Age>25</Age>

</Employee>
The XSLT stylesheet used for this application is divided into three files. The first stylesheet explains the
following functions:
current()
document()
function-available()
element-available()

UoooaoQ

format-number()

Tthe code for products2.xsl is given in Listing 27.18, (you can find the product2.xs] file in the
Code/XML/Chapter 27/XSLT folder on the CD)

Listing 27.18: products2.xs]

<?xml version="1.0" encoding="150-8859-1" 7>
<xsl:stylesheet version="1.0“'xm1ns:xs]a"http://www?w3.Drg/1999/x5L/Transform">
<xs1:key name="productiist” match="PRODUCT" USE="PRODUCTNAME": /> - -
<xsl:template match="/"» : . . Lo e
<html>
<h3>Accessing Current node using ‘current() Ffunction</h3s R
'<2511for~each_SeTectﬁ"PRODUCTDATn/PRQDUCT/PRQDUCTNAME“5"“
: <xs1:value;of'seTect=fcurréﬂf()" fo<hirfs o
</xs51:for-eachs : . - L
<h3>Accessing emp.xml using document () ‘function</h3>»

<xs):ivalue-of seTect="document(’emp.xmT")"/>
<h3>using ‘element-available() functign</h3>
=xslichooses’ ¢ 0 o T ST
<xst:when test="dlement-avaitabte(xs:element ') >
<p>xstielement is supported.</p> o
</xs1:whan> i
<xsT:otherwise>
<p>xsl:element is not supparted. </p>
</xsl:otherwise> ! e e
</xs1:choose>
<xs1:choose>
<xs1:when test="element-available('xsT:update’)"s -
<p>xs1:update is supported.</p> . S
</xs1 :when> o
<xs}:iotherwise> : oL
<p>xsl:update is not supported.</p>
</xs1:o0therwise> -
</xs1l:chogses .- Co e SAREEIE
,r<h3>using‘format-number()_function<£h3>, fael o hpe i nl L
<xsl:value-of select='format-number(123456, UHaE R 00" focbr/s
<xst:value-of. selects'format-number(0.456789, Y#IETY' S
<h3>Using functﬁonﬂav311ab3e(}—function<zh3>'n SRR e
<xsl:choose> S e
<x5}:when test="function-available(update')"s
~<prupdate () -is supported. </p> - :
</xs51:when>
<xs]:otherwise>
<p>update() -is not supported.</p>
</xsl:otherwise>
</xst:chooses :
<xsl:chooses. e - : T S Ao
<xs]:yhen-tests“function—ayailab]e('doqumgn;f) > :
<p»document{) is supported.s/ps = o
</xsT:when> T .
<xs1:otherwises o L o
-<p>document(} is not supported.</p> .
</xs1:otherwise> o o

1076

Working with XML

Fxslistyteshust

You have to change the <xml-stylesheet> in the product.xml file so that it points to this XSLT stylesheet as
shown here:

<Trml-Styleshedt types"text/xs1™ hrefa"products2.xsT"?> :
Now open the preduct.xml file in the browser Tlus w1ll look like the one shown in Flgure 27 10:

Accesting emp.zmd wsing docwmentf) function
Aminish Ermor Sugh 28

Esing elemeut-availabie() function

i ehmat s upponed

P R ——

Using format-nerober() function

1242600
26

Using fumctica-svallablel) fuxcrion

e 3 nak sopperted

document) B ruppanted
Cora T Wiemome [barien o0 WA v
Figure 27.10: Showling Various XSLT Functions

The second stylesheet explains the generate-id () function. The code for products3.xsl is given in Listing
27.19, {you can find the products3.xsl file in the Code /XML/Chapter 27/XSLT folder on the CD):

Listing 27.19: products3.xsl

1077

Chapter 27

Now let’s change <xml-stylesheet> in the product.xml file so that it points to the XSLT stylesheet,
as shown in the following code line:

LT xmE<stylesheet: typeu TN/ 8T hrefh”ﬁrnuuctss #ET

- gcnrw»a.-u ; S)vav dp v Pega. v Gl Tehsc v

] Creating Prodact’s Hypetiiuk usisg gracrate-id() function
FRODUCT:

s Hartge

Hyperliak Created By gewerate.id() feachon
3 PRODUCT Barbie Dol

Price. 240 03

] Qummic. 32
§ PRODUCT Mini Bus

4 Prce 42000

f Quaciir: &

1 PROBUCT £ar

Prize: §00.00

Cuaanticy 11

PRODUCT. Ak Plane

L Poze: 70000

Quamtity 15

T

Flgure 27.11: Showmg XSLT generateqd () Function
The third and the last stylesheet explains the functions, key() and system-property(}. The code for
products4.xsl is given in Listing 27.20, (you can find this file named productsd.xsl in the
Code/XML/Chapter 27/XSLT folder on the CD}):

Llstmg 27.20: products4 xsl

1078

Working with XML

Now let’s change the <xml-stylesheet> in the product. xmml file so that 1t pomts to thlS XSLT stylesheet as
shown here:

s <taml-stylesheet typex"text/xs1! href="products4. xs1"7> SRR
Next open the product.xml file in the browser. This w1ll Iook lrke the one shown in Flgure 27. 12

3c\mnmmm Vs et Eplorsr

T B B v b e ook

Using key() function

Preduct Name Mini Bus
Price. 420.00

Quantity 6
Using system-property() function
Version 1

Vendor Microsoft
Vendor URL. http: w-ww amicrosoft cotn

Dene’ W””V7””.””””"’”‘“ ”Compulu[Pmnddt_Oﬁ o “&1@’- B

Figure 27.12: Using XSLT Functions and Elements
After discussing about XSLT in detail, let’s describe Xpath which is an expression language used by XSLT.

Transforming an XML Document Using XSLT

An XML document can be transformed into HTML, WML, or other markup languages. Listing 27.21 shows an
XML document product.xml, when you open the document in a browser supporting XML, such as Internet
Explorer:

Llshng 2'7 21. product xml

of 5-10"years</DES

1079

Chapter 27

-mm»?m.nedmxcsa -y
Wrrm25</qumm> -

Notice that the data is dlsplayed w1thm tags However thlS format of drsplay is not requlred by the users, who
would appreciate data being displayed in an easy-to-navigate manner. To do this, you need to transform the
XML document into an HTML document using a transformation language such as XSLT, which is part of XSL
family. The XSL family contains two main parts: XSLT, which is a transformation language; and XSL, which is a
formatting language.

Listing 27.22 shows the product.xsl document, which is used to transform the product.xml document into an
HTML document:

Llstmg 27 22: product xsl document

: -"iwcfxsl template>
sz tm‘lau mt:ha"

T tane bordere"2" widthe"S0N"S
‘ ‘<xs1;:for-each select="p
ooste - :

A

1080

Working with XML

The Listing

structure of a stylesheet. An XSI, Stylesheet begins with either the stylesheet elements or with transform.
Both these elements do the same thing. The most important element in the XSL Stylesheet is the template
element. The XSLT elements used in this listing are as follows:

=

Q
-

<xsl:itemplate>—This element defines a template for producing output. It is a top-level element. 1t
contains rules to apply when a specified node is matched against a pattern or explicitly by name. It uses a
match attribute for defining the pattern. Matching against a pattern makes use of the match attribute of the
<xsl:template> element. For example, match =" /" defines the whole document as it matches the root
element. :
<xsl:apply-templates>—This element defines a set of nodes to be processed by selecting an
appropriate template rule for each. The <xsl:apply-templates> element is an instruction, which is
used within a template. It selects a set of nodes and processes each of them by finding a matching template.
<xsl:stylesheet> or <xsl:transform>-—These elements are the outermost elements of the
stylesheet. Both of them are used to define the root element of the stylesheet.

<xsl:value-of>—This element is mostly used for writing text to a result tree. It is used for constructing a
Text node and extracting the value of a node.

<xsl:for-each> —The <xsl:for-each> element allows you to implement looping in XSL.
<xsl:output> —This element specifies the format of the cutput document.

Let us see XML document product.xml on which we are applying product.xs] stylesheet. Listing 27.23 shows the
product.xml document. The product.xml document shown in this listing is little different from the previous
product.xml document. In this listing, the product.xml document has no attributes under the <PRODUCT> tag.

Listing 27.23: products.xml

‘<DESCRIPTION>THis
</DESCRI

1081

Chapter 27

SPRODID>PO0d </PRODID - - -

ICE>700,00</PRICE>
SEQUANTITYS25</QUANTITY>

Listing 27.24 shows the code of the XML2HTMLUsingXSLT java file, which uses the XSLT API to transform the

XML document shown in the previous listing;

Listing 27.24: XML2HTMLUsingXSLT java
P JEVAK: X T ransFormI T
v v impert Favanml . transform stream: *5

import javaiio.r;
- public

duct.xml document. In this lising, when we create the
Transformer instance, the product.xsl document is passed as StreamSource to the newTransformer() method.
Finally, the listing invokes the transform method on the Transformer instance (t) to apply the product.xsl
stylesheet on the product.xml document.

— 1 |

Figure 27.13: Showing preduct.html

1082

Working with XML

In this Figure, first argument passed to main method of XMLZI—ITMLUsmgXSLT java file is product.xsl and
second is narne of HTML file which resides the output of this file.

Let’s move further and learn about XPath.

XPath

XPath is an expression language used for finding information in XML documents, XPath lets you address specific
parts of XML documents. One of the fundamental things to realize about XPath is that it is not used alone. It is
used in conjunction with other XML technologies, such as XSLT. Another important thing about XPath is that it is
used with XML applications, but it is not written using XML syntax.

The most important concept related to XPath is that it represents an XML document in the form of a tree. This is
known as XPath Data Model. According to this model, an XPath document has seven nodes. These nodes are as
follows:

0O Rootnode

Element node

Attributes node

Namespaces node

Processing-instruction node

go0oo0pRo

Comment node

0 Textnode

In XPath Data Model, each tree has only one Root node. This node cannot occur anywhere else other than the
root of the tree. The Element node represents an element in the source ¥ML document. An Element node may
contain an ordered list of child Element nedes. The ordered list is useful when we want to access nodes
according to their positions. The Attribute node represents an attribute in the source XML file. The parent node of
Attribute node is Element node. The Namespace node represents a namespace that is in scope on the element in
the source XML document represented by the parent Element node of the namespace node. The Processing-
instruction node represents a processing-instruction in the source XML document. The Comment node represents
a comment in the XML document, and the Text node represents the text content of an element.

Functionality of XPath
In this section, we’ll discuss how XPath works with XSLT. Before that we'll explain how XPath expressions are
written for accessing nodes and elements from the XML documents. But first, let’s look at some commonly used
path expressions.

Location Paths
Location path is one of the path expressions. The location paths are generally used for accessing node-sets.
Suppose you want to access the root element of the XML document given in Listing 27.13. This can be
accomplished by any of the following path statements:

O /PRODUCTDATA

a /*

Suppose you want to access the product element. This can be accomplished by any of the following path
statements:

G /PRODUCTDATA/PRODUCT

o /*/PRODUCT

O /PRODUCTDATA/*

D /*/t

a //PRODUCT

1083

Chapter 27

Selection of Nodes

You can select the nodes in an XML document using XPath expressions. Table 27.20 lists the most important path
expressions syntax for accessing nodes.

Table 27.20: XPath expression syntax

node This expression selects ail the child nodes of the specified nodes

/ This expression shows that the selection will start from the Root node
/ /element This expression selects all the elements no matter where they are in the XML document

This expression selects the current node

This expression selects the parent of the current node

//@id This expression selects the attributes named id

Let’s consider an XML document product. xml in Listing 27.13. When the path expressions (mentioned in Table
27.21) are applied on the XML document {product.xml), the corresponding results produced as listed in
Table 27.21.

Table 27.21: Xpath expression with their results

This expression selects all the child nodes of the PRODUCTDATA
element

PRODUCTDATA

/PRODUCTDATA This expression selects the Root node

//PRODUCT This expression selects all the PRODUCT elements, no matter
P
where they are in the XML document

This expression selects the current node

This expression selects the parent of the current node

/PRODUCTDATA,/PRODUCT/PRODUCTNAME This expression selects all the PRODUCTNAME elements under the
PRODUCT element

Using Predicates
Predicates are used with path expressions to find a specific node or a node with specific value. The predicates
are enclosed in square brackets in path expressions. Table 27.22 lists some path expressions with predicates.

Table 27.22: Xpath expression using predicates

/PRODUCTDATA/PRODUCT{0] This expression selects the first PRODUCT element, i.e. the child of

the PRODUCTDATA element

/PRODUCTDATA /PRODUCT(last(}] This expression selects the last PRODUCT element, i.e. the child of
the PRODUCTDATA element

/PRODUCTDATA/PRODUCT]last() -1) This expression selects the last but one PRODUCT element, i.e.
the child of the PRODUCTDATA element

/PRODUCTDATA/PRODUCT] position() <3] This expression selects the first two PRODUCT elements that are
the children of the PRODUCTDATA element

/ /PRODID[@id] This expression selects all the PRODID elements that have an
attribute named id

1084

Working with XML

Table 27.22: Xpath expression using predicates

/PRODUCTDATA /PRODUCT[PRICE > $60] This expression selects all the PRODUCT elements of the
PRODUCTDATA element that have a price element with a value
greater than $60

XPath Functions
This section will introduce you to XPath functions. XPath functions return the following values:
O Node set
Q Number
O String
Q Boolean
We’ll cover all these four categories here, So let’s start with node set functions.

Node Set Functions
XPath provides various functions that allow us to access a selection from the node set and return another node
set. These functions are generally used with those path expressions which use predicates. XPath contains the
following node set functions:
Q count()

last()

local-name(}

name()

namespace-uri{}

positiony)

The county} Function
The count function returns the number of nodes in an argument nede-list. For example, consider the XML
document given in Listing 27.13. When we apply the stylesheet given in Listing 27.25, it returns the number of
<PRODUCT> element present in the source XML document.

Here’s the code, given in Listing 27.25, for count.xsl (you can find this file in the Ccde/XML/Chapter
27/¥path Ncdeset Functions folder on the CD):
Listing 27.25: count.xsl

0O Qo0 D

When you are using XPath functions, it is necessary that you use an XSLT processor. In this case, we are using a
SAXON processor.

1085

Chaptor 27

You can download the SAXON processor from http://saxon.sourceforge.net/ and unzip this processor in a directory, e.g
in ¢:\saxon.

Type the following at the command line for running the stylesheet count . xs1 over product . xml:
,m\>jaVA,~j;r ‘cr\saxon\saxong, jar’prﬂdﬁct’ : :

Using couat() Functioa

4 T the source document there are 4 <PRODUCT> sements.

one . ﬂmmwmwuudem

Figure 27.14: Using Xpath's count() Functlon
The lastf) Function

The last () function returns an integer equal to the context size. This function is used to access the last node in

a context. Let’s apply the stylesheet, last.zsl (given in Listing 27.26) on the XML document product.xml in
Listing 27.11,

Here’s the cede, given in Listing 2726, for applying the stylesheet (you can find this file in the
Code/XML/Chapter 27/Xpath_Nodeset Functions folder on the CD):

Listing 27.26: last.xsl

After processmg the sty]esheet by SAXON pmcessor, when you open the resultant HTML file in your browser it
looks like the one shown in Figure 27.15:

1086

Working with XML

T
The XPath Inst(} fimction: reterns an isteger equal to he cottent size. iy
Here is the comtent of the kst node in the comext: J;

i3
Ax Plne i

i
This is 2 4oy for chiidren in the age group of 08-15 vears 3
“00.00 i
s i
Do T T T M ot | ket Mo . Ramh v

Figure 27.15: Using XPath’s last{) Function
Consider the following XML document, given in Listing 27.27 (you can find this file in the Code/XML/Chapter
27/¥path_Nodeset Functions folder on the CD}):
Listing 27.27: emp_namespace.xml
L <Txml versions"1.0" ercodin

Here’s the cddé, given in Listing 27.28, which apply the s.tyles.heet (you can find th.lS file in the
Code/XML/Chapter 27/Xpath_Nodeset Functions folder on the CD):

Listing 27.28: localnamespace.xsl
]

1 Using locat mame()

| The Jocal part of the <empfirst- clement is frsz

The name() finction applicd to the <empfirst> element retums: empfirst
Csing mamespace-ari(t

1 The nanespace i) fimction apphied to the <empfirse> clement remras bt kogermndia com emp

bene e epa st voae O i

Figure 27.16: Using Xpath's lacal-name(), name{}, and namespace-uri{) Functions

The focal-name() Function
This function is part of the QName after the colon. So in the element <emp : name>, the string name is the local
part. The local-name () function returns the local part of the expanded name of the node in the argument
node-set that is first in the document order.

The name() Function
The name () function returns the stting containing a Qname representing the expanded name of the node in the
argument node-set that is first in the document order. An example of using name () function is given in
Listing 27.28.

The namespace-uri() Function
The namespace-uri () function returns the namespace URI of the nodes in the argument node-set. Its example
is given in Listing 27.28.

The position() Function
The position () function returns a number that reflects the context position of the context node. The example
of this function is given when we discuss String functions.

Number Functions

In this section, we’ll describe the XPath number functions. These functions are used for manipulating numbers.
XPath has the following number functions:

0O ceiling()
g floor()

O number()
0 round()
Q sum()

1088

Working with XML

The ceiling(} Function

The ceiling function is a type of round-up function. It returns the smallest integer which is greater than the
argument for the function, Here’s the code, given in Listing 27.29 that shows a XML document (you can find this
file in the Code /XML/Chapter 27/Xpath_Number Functions folder on the CD):

Listing 27.29: temperature.xml

Here’s the code, given in Listing 27.30, for applying the stylesheet (you can find this file in the
Code/XML/Chapter 27/Xpath Number Functions folder on the CD):

Listing 27.30: ceiling.xsl
. ;) ,

After pro.c.essing. w1th .the SAXON profeééor, the browser will display the resultant document like the one shown
in Figure 27.17:

Howge o P
IR B
Br Gmoithom i) Pagew Qoo ©

Delii’'s Temperatures - rounded up, using ceiling() function
=6 - Monday

69 - Tuesday

65 - Wedaesdar

71 - Thursday

Dont M Compurer | Pretecied Mede: OFF Hloow -

Figure 27.17: Using Xpath's ceiting(} Function
1089

Chapter 27

The foor() Function
The floor () function is a type of round-down function. It returns the greatest integer which is not greater than
the arguument for the function. Let’s take an exampie.

Here’s the shylesheet, given in Listing 2731, for applying it on the XML, document of Listing 27.26 (you can find
this file in the Code/XML/Chapter 27/Xpath_Number_ Functiocns folder on the CD):

Listing 27.31: floozr.xs1

After proceésing with the SAXON processor, the browser will display the resultant document like the one shown
in Figure 27.18:

Delhi's Temperstures - rounded down, using floor() function
=5 - Monday

68 - Tuesday

64 - Wedneaday

1 - Thrsday

65 - Friday

Done | Compue|Protecied Mode O %100% +

Figure 27.18: Using Xpath's floor {) Function

The number (} Function
The number () function converts its argument to a number. It returns a NaN (Not a Number), if the specified
argument is not a number. Let’s change the temperature.xml file (Listing 27.29) so that the element
<Monday> now contains some text value,
Here’s the stylesheet, given in Listing 27.32, for applying it on the changed XML document of Listing 27.29 (you
can find this file in the Code/XML/Chapter 27/Xpath_Number_Functicns folder on the CD):

Listing 27.32: number.xsl

Working with XML

P WY

After processmg W1th the SAXON processor the browser will d1splay the resu}tant document hke the one shown
in Figure 27.19 {Observe that, while accessing the text value using number () function, it returns NaN):

Accessing Text

MNaN

Accessing Number

Flgura 27.19; Usmg Xpath 's number () Function

The round() Function

The round() function rounds a real number to the nearest integer. Consider the XML document, given in Listing
27.29, and apply the stylesheet given in Listing 27.33 (you can find this file in the Code/XML/Chapter
27/¥path_Number Functions folder on the CD):

Llstmg 27.33: round. xs1

Chapter 27

After processihg with the SAXON processdr, the browser will ‘dxsfléy the resultant document like the one shown
in Figure 27.20:

Delhi's Temperatures - rounded. using round() function
75 - Monday

65 - Tuesday e

65 - Wednesday i E

71 - Thorsday ; .

Done ; . Compu(er| Pmteaee Mcde Off fmm -

Flgure 27.20: Using Xpath’s round() Function

String Functions
Let study the XPath string functions. Here are the functions of XPath that are used for manipulating strings:

concat()

contains()

normalize-space(}

starts-with()

string()

string-length()

substring()

substring-after()

substring-before()

translate(}

oo cooo0O0E o

The concat() Function
The concat () function concatenates the arguments passed to it. Here’s the XML document, given in Listing
27.34 {you can find this file in the Code/XML/Chapter 27/Xpath_String Functions folder on the CD):

Listing 27.34: poem. xml

Here’s the stylesheet given in Listing 27.35, for applying it on the XML document of Listing 27.34 (you can find
this file in the Code/XML/Chapter 27/Xpath_String_Functions folder on the CD):

Listing 27.35: concat; .xs1

1092

Working with XML

Shaste. o el Tagl e Todkel e ey

After processing with the SAXON processor, the browser will display the resultant document like the one shown
in Figure 27.21:

Functions\concat.htm!

The start of the Poem rhyme is: Twinkle Twinkle Litle Star How R Wonder What U R

Done "/ Computer | Protectad Mode: O £100% -~

Figure 27.21: Using Xpath’s concat(} Function

The contains(} Function
The contains () function takes two String arguments and checks whether the second string is present in the
first string. If yes, then it returns Boolean value true, otherwise it returns false.

Here’s the stylesheet, given in Listing 27.36, for applying it on the XML document of Listing 27.34 (you can find
this file in the Code /XML/Chapter 27/Xpath_String_Functions folder on the CD):

Listing 27.36: contain.xsl
- ATNoloerSTORATE:

1083

Chapter 27

L e us vifs T I i Sk R
- %/xstitemplates

</xsTistyleshaets : : ;

After processing with the SAXON processor, the browser w1ll display the resultant document llke the one shown

in Figure 27.22:

[t \Kpath S&nng Funchons L6

;‘Frte Edtt Vbew mees Toon Hetp 7
\:3’ 5533 ’ﬁUsmg&:toan;{]f\mcbon :

{ Using the XPath contains() function

The Poem rhyme Twinkde Twinkle Lide Star” contams the word Twinkfe”

1 The Poem rhvme Twinkle Twinkde Little Star is a famous poem” contains the word Twinkle”

_Done *G:mp erjpmtecteu‘M d:.Oﬁ 1-".1.005’-: -

Flgure 27.22: Usmg Xpath’s contains(} Function

The normalize-space()} Funciion

The normalize-space () function is used to remove the leading and trailing whitespace from a string by

replacing any internal sequences of whitespace characters by a single space character. The normalize-

space () function takes zero or one argument. If no argument is passed then the string value of the context node
is evaluated. Otherwise, the argument is converted to a string and then evaluated. Here’s the XML document,
given in Listing 27.37, that contains many whitespace and leading space characters (you can find this file in the

Code/XML/Chapter 27/Xpath_String_Functions folder on the CD):

Listing 27.37: whitespace, xml
<?xml. version='1.0"7>
<whitespace» C T

.. sTexts. This has 'Ieadmg spaces and one b'[g gap.
caused by excess whitespace. </Text>
<Text>This 'doesn't have Teading space bu “does
have ‘Sequerices of space. characters </Ta=xts
</whitespaces:

Here’s the stylesheet, given in Llstmg 27 38, for applymg it on the XML document of Llstmg 27 37 (you can find
this file in the Code/XML/Chapter 27/Xpath_String_Functiens folder on the CD):

Listing 27.38: whitespace.xs]

D «Pam): verston="1.0"7» " St

xS styTesheet version="1.,0" >
xmlns:xsT="http://wew, w3 .0rg/1999;
<xsi: temyute match="/ 3

Working with XML

After processmg with the SAXON processor, the browser w1ll dlsplay the resultant clocument llke the one shown
in Figure 27.23:

I .5
i >
.L;Page &Tmh*

{:dft v;:w Fs,nf:u

Using normaiize-space() - the before' and after” i
Before: This has leadmg spaces and one big gap caused by excess whitespace.
After This has leading spaces and one big gap caused by excess whitespace.

Before This doesn't have leading space but does have sequences of space characters .

After This doesn't have leading space but does have sequences of space characters . -
o M Computer | Protected Mode: Gif #100% -

Done:

Figure 27.23: Using Xpath's normalize-sace () Function
Here’s the code, given in Listing 27.39, for this document (you can find this file in the Code/XML/Chapter
2'7/¥path_String Functicns folder on the CD):

Llshng 27 39 whltespace html

The starts-with (} Function
The starts-with () function takes two string arguments. It checks whether the first string argument starts
with the second string argument,
Here’s the stylesheet, given in Listing 27.40, for applying it on the XML document of Listing 27.34 (you can find
this file in the Code/XML/Chapter 27/Xpath_String Functions folder on the CD):
Listing 27.40: startwith.xsl ‘

1095

Chapter 27

litemplate match="/">

: ;</tmn’l> DA
S efxs) temp}ate:- ’

“¢/%8Vistylesheet> -
After processing with the SAXON processor, the browser will dlsplay the resultant document hke the one shown
in Figure 27.24:

ﬁc‘xpa(h Stmg_pummsxw i - Windows intetnet Bcpfover

. 1 . h
vU - r,!' C:\‘).\‘path__s.trln't_g__F_unc_tIiUInE'-,ggnwﬂh.htm; - ; &,.1 X :]‘— km;'g B o ,O v

Lire

: o " ks
e 'ﬁ Cipath Stnng,Funcuon&\Atlrtmﬁl tms . 23k Fage v £k Tooks. ..

e — e ey T

Does the first phrase of the pursery thyme start with Twink”7 - true

Done) T HCumpu!erIPmtccmdModeOff TQIOO% -

Figure 27.24: Using Xpath’s starts-with() Functlon

The string(} Function
The string () function simply converts its argument to a string.

The string-length() Function
The string-length () function returns the length of the string passed to it as the argument. Here’s the way to
apply the stylesheet, given in Listing 27.41, on the XML document of Listing 27.34 (you can find this file in the
Code/XML/Chapter 27/Xpath_String_Functions folder on the CD):
Listing 27.41: stringlength.xsl
v < Tamoversions 1y
xxsl: s;y]e _ he :

23
i <xsT-app1y—tempTates se1‘ect= PneéniPhr
«/body>
</hwml>
</xsT: temp‘late:-
<xslitemplate matchs"Phrase"s
«p»The string:" '-rxslwa‘iwof sﬂe'
select="positign(d"/> is:
<xsl:value-of se1ect="str1ng-1ength(
o ofxg) templates
%5l styhsﬁeab 5

1096

Working with XML

After processing with the SAXON processor, the browser will display the resultant document like the one shown
in Figure 27.25:

 Explori

. ! Lg.[7F:‘.XPath_}tn'r}g_Functions’as?ﬁn_glep?t_hfh‘;ry'{l___'_l s [Xj, ! Googie

I Usinig thie stiliglengthly fanction - Windows 14

e

¢ Bde bt R

>

4

W, 47| @ Using the string-length{) function b e B v A v i Page = {Took v
T S s e T ——— ——— "
Using the string-length() function

|

The string ” Twinkde Twinkde Little Star” n position 1 is 27 characters long. T
=

The string " How R Wonder What U R" i position 2 is 21 characters long. H
Y

P . P - o i

The string * Twinkde Twinkle Litde Star is a famous poem” in position 3 is 44 characters long. i

Dene A Computer | Protected Mode: Off K100% -

Figure 27.25; Using Xpath’s string-length() Function

The substring() Function
The substring() function has three arguments. The first argument specifies the string from which the
substring is to be extracted. The second argument specifies the character from where the extraction starts, and
the third argument specifies the length of the string to be extracted.
Here’s the way to apply the stylesheet, given in Listing 27.42, on the XML document of Listing 27.34 (you can find
this file in the Code/XML/Chapter 27/Xpath String Functions folder on the CD):

Listing 27.42: substring.xsl

After processing with the SAXON processor, the browser will display the resultant document like the one shown
in Figure 27.26:

1097

Chapter 27

8 theGubistringl) fdstion - Windows Titermes Eplorer

U
W |

C-Xpath_String_Functionsisubstring htmi

L - .

- B j»gl.llsi!'u_at!'ue~a.x|:st_ring§)fum:tu.m : K o .
Using the substring() function. i
. i3
The substring of Twinkde Twinkle Little Star” beginning at character + and of length § is " nlde Twi” f a
The substring of How R Wonder What U R” beginning at character 3 and of length 8 is " R Wonde". ' §
The substring of Twinide Twinkle Little Star is a famous poem” beginning at chavacter 4 and of length 8 is © ’g
| ohde Tod". o)) _ -

| Done i Camputer | Protected Mode: Off HI0% -

Figure 27.26: Using Xpath's substring() Function
The substring-after(} Function

The substring-after () function returns the substring that occurs in its first argument after the first
occurrence of the string in its second argument.

Here’s the way to apply the stylesheet, given in Listing 27.43, on the XML document of Listing 27.34 (you can find

this file in the Code/XML/Chapter 27 /¥path_String_Functions folder on the CD):

Listing 27.43: substring-after.xs!
L Taiml version="1.0

xslistyles
After process

ing with the SAXON processor, the browser will display the resultant documehf like thé one shown
in Figure 27.27:

1098

Working with XML

LR
" Lirtks
va{axm-

g B - - - . - - .,
\/’U : !ﬂ C:-A_(_path_Strlng.vFunctron§’-sub:tr_ln_g—_af_te“r.i?htnl.__“ -

Using the substring-after() function.
The substring after the first occurence of Twinkle' :m Twinkle Twinkle Litte Star” is > Twmkle Litte Star
The substring after the first ocourence of Twinkle' in How R Wonder What UR"is >

The substring after the first occurence of Twinkle’ in Twindde Twinkde Litde Star is a famous poem” is >
Twinlcie Little Star is 2 famous poem

Done . W Computer | Protectedhode: Off R100% +

Figure 27.27: Using Xpath’s substring-after() Function

The function substring-before () works similarly, but it returns the substring that occurs in its first
argument before the first occurrence of the string in its second argument.

The translate() Function
The translate () function translates the first string argument with the occurrence of characters specified in the
second argument by replacing the characters specified in the third argument.
Here’s the way to apply the stylesheet, given in Listing 27.44, on the XML document of Listing 27.34 (you can find
this file in the Code/XML/Chapter 27/Xpath String_Functions folderon the CD):

L1st1ng 27.44: franslate.xsl
<Pxml version="1.0"7> . -
exs]istylesheet. ers'nn'

: <';/head> s

_ .<body> S
| eWsusing t‘h& T
<xs1.:apply-templat
</body> '
</hml>
© ksl ftempTates s Co
ksl itemplate . mtchz“Phrast”b - g
<p>Applying the translate(). function speaﬁed to the strmg
*exs]:value-of select=","/>" produces the string
"exs] ;value-of se1ect="trans‘tate(«, - labedefghi Jk‘lmnopqrstuwxyz ,
o 'mntmzmmsm‘)"h“ e:/py S e
--</xshtefaﬁ'late> : B

</xs1:stylesheet>
After processing the SAXON processor, the browser will display the resultant document like the one shown in
Figure 27.28:

1099

Chapter 27

Using the translate() function

Applying the ranslate(} function specified to the striig “Twinkle Twinide Litde Star” produces the string
"TWINKLE TWINKLE LITTLE $TAR".

Applying the translate() fanction specified to the string "How R Wonder What U R” produces the string "HOW | °
R WONDER WHAT U R". i

1
!

Applsing the translate() function specified to the string "Twinkle Twinkde Litte Star is a famous poem”
Produces the string "TWINKLE TWINKLE LITTLE STAR IS A FAMOUS POEM".

Done T M Computer | Proected Mode O Adaos w

Figure 27.28: Using Xpath’s transiate () Function

Boolean Functions

Let’s now understand the XPath Boolean functions. These functions are used for manipulating Boolean values
true and false. Here are the following Boolean functions of XPath:

O boolean()
O true()
Q false()
0O lang()
Q not()
The boolean() Function

The boolean{} fanction takes one argumnent and converts it into boolean value. The argument may be a
number, string, boolean, or node set. Every non-zero number is treated as true, and zero or NaN (not a number)
is treated as false. If the argument is a string then every non-empty string is treated as true and an empty string
is treated as false. If the argument is a node set then every non-empty node set is treated as true and empty node
set is treated as false. If the argument is a boolean value then that value is unchanged.

The true() Function
The true () function does not take any arguments. The true (} function returns a boolean value of true. It can
be used in a situation where a boolean constant might, otherwise, be required.

The false() Function
The false () function does not take any arguments. The false () function returns a boolean value of false.
It can be used in a situation where a boolean constant might otherwise be required.

The not{) Function
This function takes one argument. The not () function negates the value of the condition passed in the

argument. For example, if the condition passed in the argument is evaluated as true then the negate function
will negate this value and return false.

The lang() Function
The lang () function takes one argument. The purpose of the lang () function is to test whether the language
of the context node, as determined by the relevant xml:lang attribute, matches the language passed to the
lang () function as its argument,

Now, let’s discuss XML linking mechanism.

1100

Working with XML

XML Linking Mechanism

The World Wide Web Consortium’s (W3C) XML Linking Working group has designed hypertext links for XML.
The developers of this group has explicitly defined the ways so that links itself are written in XML and makes a
distinction for links between external link objects and internal link objects to locations within XML documents.
Link is basically a relationship, which is asserted to exist between two or more data objects or portions of data
objects. The main agenda of the W3C XML Linking Working Group is to design highly advanced, scalable, and
maintainable hyperlinking and addressing functionality for XML. Now, XML allows the Web developers to use
their own personal markup tags in a way that XML-ready browsers can interpret them. The XML Linking
Language (XLink), which is XML markup language is used for creating hyperlinks in XML documents, and
provides a mechanism for adding links between XML pages. On the other hand, the XML Pointer Language
(XPointer), which is designed to address structural aspects of XML, allows hyperlinks to point to more specific
parts (fragments) in the XML document. The XPointer uses XPath expressions to navigate in the XML document.

You all are familiar with HTML hyperlinks, which are generally used to get to and from XML pages. Though

XLink linking mechanism is more complicated than a traditional HTML linking mechanism, but it provides a
more classy way of linking the multilayered structure of XML documents.

Linking with XLink and XPointer
XLink and XPointer both are W3C recommendation. XLink 1.0 received the W3C recommendation status on 2001
June 27 and on March 28, 2006, XLink 1.1 entered W3C Candidate Recommendation status. The XML Pointer
Language (XPointer) received the W3C recommendation status on 25. March 2003.
A set of attributes are defined in XLink that are added to elements of other XML namespaces. XLink provides
two kinds of hyperlinking technique to use in XML documents such as:
O Simple links — Offers similar funchionality to HTML links, which are in-band links. A simple link is similar
HTML link and it simply creates a unidirectional hyperlink arc from one element to another through URIL
You can see example of a simple link in the following code snippet:

LU/ dacuments R : S,

O Extended links—Offers out-of-band hyperlinks that can link resources over which the link editor has no
control in a linkbase document. You can connect multiple resources, either remote or local, by multiple arcs
through extended links. Arcs are unidirectional and only define traversal in a single direction.

An extended link can attain particular traversal pathways among the resources, by grouping resources with

labels and using one or more arcs. It is not mandatory to contain all extended links in the same document as the

elements they link to. It helps in associating metadata or other supplemental information with resources without

editing those resources. The browser support for XPointer is minimal. Some of the important software, which

supports for XLink, as of 2006 June, are as follows:

O Mozilla FireFox — Mozilla Firefox 1.5.0 has very limited support for simple Xlinks. The CS5-formatted XML
is only supported.

Q Internet Explorer — Internet Explorer support very limited Xlinks, if msxml version 4.0 is used.

Q Netscape—Netscape 7.2 has the same support for simple XLinks as Mozilla Firefox, but the
xlink:show="new" attribute works correctly in Netscape 7.2.

O Resource Directory Description Language (RDDL)—RDDL, an extension to XHTML Basic uses XLink
simple links.

In HTML, you can create a hyperlink, which either points to an HTML page or to a bookmark within an HTML

page with the help of hash (#). Sometimes there are certain situations in which, we need to point to more specific

1101

Chapter 27

content in a document. Let’s say, you want to link to the second item in a particular list in a document. You can
do this easily with the help of XPointer.
In the xlink:href attribute, you can add an XPointer part after the URL, to navigate to a specific position in the

XML document, if the hyperlink points to an XML document. For example, XPointer is pointing to the sixth item
in a list with a unique id of “computer™, in the following code snippet:

“href="http://wew.kogent.com/cd1list. xml#id(" computar*). child(6, item)"

Working with XLink

Now, let's see how to work with XLink in a XML document, For that create 2 XML file named employee.xml,
which gives information of the employees of a company along with their photos. Listing 27.45 shows code for
the XML file (you can find the code of employee.xml file in the Code\ XML\ Chapter 27\ XML folder on the CD}):
Listing 27.45: employee.xmi
- <?xml version="1.0" encoding="I50-8859-1"7>
<company xmlns; xlink="http://www.w3.0rg/1999/x¥ink">"

<enployee name="John"> -
<description .
xlink:type="simple" : L
x1ink:href="http://kogent.com/images/Ichn.gif" -
Cxlink rshow="mew'> . g DB L R :
John has- joined kogent five years .back. Now, he is.i
done his Ms from oxford university.. o0
</description> ST oo
<Femployees: - te T e AL
“<employee name ="Lisa"s.. . .
o<desoription oo
coxlipkztype="simple” .~ .~ . e
x1ink:href="http://kogent. con/images/iisa.gif "
xVink; show="new"> LT e |
Ci¥sa-has ‘10'5'1‘"!'&.- kogent -ten’ years back. Now, she i§ ‘thi
. company. She has done’ her studies: from the ‘university of
S <fdeseriptions T T A
| z/employees
</ company>
In the preceding listing:
Q@ The XLink namespace (xmlns:xlink="http://www.w3.org/1999/xknk"™), is declared at the top of the
document, which shows that document has access to the XLink attributes and features.

The xlink:type=“simple” creates a simple “HTML-like" link.

The xlink:href attribute specifies the URL to link to.

The xlink:show attribute specifies where to open the link.

The xlink:show="new” means that the link should open in a new window.

Working with XPointer

Now, let’s see how to work with XPointer in combination with XLink to point to a specific part of another
document. For that create a XML file named bird.xml. Listing 27.46 shows code for the XML file {you can find
the code of bird.xml file in the Code\ XML\ Chapter 27\ XML folder on the CD}:
Listing 27.46: bird.xml

<?xm1 version="1.0" encoding="150-8859-1"7>

- <birdbreedss> Co e
<bird breed="piamond pove” id="piamond Dove’s
<picture uri="http://animal.comfbove.gif"/>)

. <description>niamond Dove There are many varieties of the. dove that vary in color. Some
of the more popular varieties of dove are: Ring-Neck ' '
Dove - A grey -colored dove with a dark ring around its neck....

"-f'l':ue 'b_bai”_d of '-d"ir'_éctprs-.' He. has

Ooocoo

1102

Working with XML

<fdescription> _ . T U UR TR S

<Feeding> A dove's metabolism is very active and can starve to death in as Tittle as 24
. hours if it does not eat. Doves should eat a staple ' T
diet of fresh fortified finch -seed, parakeet 'seed or pellet daily. Doves:only eat off the
dai top of what is offered, so be sure to check the. food R,
aily..... o ’ o

</Feeding>
</bird> _ L
<bird breed="cCockatiels" id="Cockatiels"> .
<picture url="http://animal.com/Cockatiels.gif"/> ' : _
<description> Grey Cockatiel If properly cared for, & cockatiel can Tive up to thirty
years. This «is a.smaller member of the parrot family... L
</description> o

<Feeding>Cockatiels should eat a staple diet of fresh fortified cockatiel seed or pellet
daily. €ockatiels only eat off the top of what s = .. i :
offered, so be sure to check the food daily. Besides a varfety of seed mix or pellet,
_ - offer chopped dark green and yellow vegetables and-a- "~ ' = -
variety of fresh fruwits in addition to- a: protein -source like mature: legumes, -hard cooked
.. chopped egg, and grated cheese..., . - . .. P SR N
</Feedings -~ ' T '
</bird> -
© </birdbreedss : :
In the preceeding listing, you can see that the XML document uses id attributes on each element, which we may
want to link to.

Summary

In this chapter, you have learnied about XML and its syntax. You also learned about DTD and DOM with XML.
Along with XML parser, you have learned how to use java with XML and SAX. Chapter also focused on
transforming an XML document using XSLT, XPath, and XML linking mechanisms with its implementation.

In the next chapter, you will learn the concept of AJAX.

Quick Revise

Q1. Whatis XML?

Ans. Extensible Markup Language (XML) is a markup language based on simple, platform-independent rules
for processing and displaying textual information in a structured way. The platform-independent nature
of XML makes an XML document an ideal format for exchanging structured textual information among
different applications. XML provides customized tags to format and display textual information. XML
documents represent data in a platform-neutral manner. For example, an XML document generated by
an application running on Microsoft Windows can be easily consumed by an application running on Sun
Solaris.

Q2. What syntax rules must be followed while creating an XML document?

Ans. The syntax used to create an XML document is called markup syntax. It is used to define the structure of
data in the document. The following rules are associated with the markup syntax:

0 XML documents must have a starting tag and closing tag

XML tags are case-sensitive

XML elements must be properly nested

XML documents must have one and only one root element

XML attributes values must be quoted

XML preserves white spaces, although you can use white spaces in content including line breaks

Q3. What is XML declaration statement? And why it is used?

Ans. The XML declaration statement is used to indicate that the specified document is an XML document.
Although it is not necessary for you to have an XML declaration in an XML document, but it is
considered as a good practice to include it. If your document has the XML declaration statement, then it

OcoQoQo

1103

Chapter 27

must be the first line in the document which defines the XML version and character encoding. An XML
declaration locks like this:
P Rl versiohsT .0 ‘encoding="150-8859-1" standatonesTyes 78 . o iR 0 s e
Some important points must be noted when using the XML declaration statement, are given as follows:
O XML declaration starts with <? xm1, and ends with ?»
8 XML declaration must include the version attribute as it is mandatory, but the encoding and
standalone attributes are optional
O XML declaration must be at the beginning of the file
O XML declaration must maintain the order of version, encoding, and standalone attributes

Q4. What is XML Parser?

Ans. XML Parser is application, which is used to read, update, create, and manipulate the XML document. For
manipulating the XML document, the XML parser loads the document into the computer’s memory and
then the data is manipulated using the DOM node-tree structure. The XML parser is a part of the
software, which reads the XML files and tests whether the XML document is well-formed against the
given DTD or the XML schema. Moreover, the XML Parser also makes the XML files available to the
application with the use of the DOM. Some examples of XML parsers are: Microsoft’s XML parser and
Mozilla’s XML parser.

Q5. Whatis DTD?

Ans. DTD is the acronym of Document Type Definition, which is used to define the XML document structure
with a list of legal elements and attributes. It defines rules and attributes, which decide how to use tags
in an XML document. A DTD can be declared either within an XML document, or can be used as an
external reference.

Q6. What is the syntax to provide a reference to the external DTD?

Ans. A reference to the external DTD can be provided in the following ways:

O <IDOCTYPE collection SYSTEM “<dtd_name>.dtd”>— This syntax is used when both the
<dtd_name>.dtd file and the XML document are residing in same directory.

0 <IDOCTYPE collection SYSTEM “<directory_name>:/ / <dtd_name>.dtd">—This syntax is used
when the <dtd_name>.dtd file and the parent XML document reside in separate directories.

Q7. What is XHTML?

Ans. XHTML refers to the Extensible HyperText Markup Language whose main focus of existence is to
replace HTML. XHTML is the HTML defined in the form of the XML application. XHTML is very similar
to HTML 4.01. From 26 January 2000, the W3C defined XHTML as the latest version of HTML. All
browsers support XHTML. As we know HTML is used to display data and XML is used to describe data.
However, XHTML combines the features of both markup languages, HIML and XML. XHTML
documents must also follow some rules. These rules are given as follows:

O XHTML documents should have nested elements

@ XHTML documents should have the end tag or closing tag for elements
Q@ XHTML documents should have elements in lower-case

O XHTML documents should have one root element

Q8. What is DOM?

Ans. Document Object Model (DOM) is a platform and language independent convention for representing
and interacting with objects in HTML, XHTML and XML documents. In DOM, objects are also called
Elements, which are specified and addressed according to the syntax and rules of the programming
language. These syntax and rules of the programming language are specified in the DOM Application
Programming Interface {API),

DOM presents an XML document as the tree-structure having the root node as the parent element and
the elements, attributes, and text defined as the child nodes, With the help of the DOM tree, the elements
containing the text and the attributes can be manipulated and accessed. In a DOM tree, you can add new
elements, modify the existing ones, or can remove the unwanted ones. Note that, in a DOM structure, all

1104

Working with XML

Q9.
Ans.

Q10.

Q1.

the elements, their text, and their attributes are called as nodes. The entire document is considered as the
Document node. The XML tag or the XML element is recognized as the Element node. The text in XML
elements is referred to as the Text node, the XML attributes are considered as the Atiribute nodes and the
comments are considered as the Comment node. In the DOM tree structure, the nodes have a hierarchical
relationship with each other. The terms ‘parent’ and ‘child’ are used to describe the relationships
between the nodes,

What is SAX?

S5AX is the acronym of Simple API for XML, which provides a mechanism to read data from an XML
document. It is the serial access parser, which is an alternative of DOM. The SAX parser is the Event
Driven parser. The user defines the number of callback methods which would be called when an event
occurs during parsing. The following is the list of SAX events:

a XML Text nodes

O XML Element nodes

Q XML processing instructions

a XML Comments

These events are fired at the start and end of each XML node, instruction or comments whenever they are

encountered. For examnple, at the start and end of a Text node, the XML Text nodes event will be fired; or

XML Comments event will be fired at the start and end of comments. Note that SAX parsing is

unidirectional, which means the previously parsed data cannot be read again, until the parsing operaticn

is started again.

What is XSLT?

XSLT stands for Extensible Stylesheet Language Transformations, which is used for transforming the

structure and content of XML document into the required output. XSLT transforms XML documents into

other XML documents. XSLT processors parse the input XML document, as well as the XSLT stylesheet,

and then process the instructions found in the XSLT stylesheet, using the elements from the input XML

document. During the processing of the XSLT instructions, a structured XML output is created. XSLT

instructions are in the form of XML elements, and use XML attributes to access and process the content of

the elements in the XML input document. As XSLT converts the XML data into human readable format;

therefore, it is used for displaying XML data in other formats, such as HTML and PDF.

What is XPath?

XPath is an expression language used for finding information in XML documents. XPath enables you to

address specific parts of XML documents. XPath language is always used in conjunction with other XML

technologies, for instance XSLT. It is used with XML applications, but have different syntax. XPath

represents an XML document in the form of a tree, which is known as XPath Data Model. According to

this model, an XPath document has seven nodes. These nodes are as follows:

@ Root node—Represents the primary node of a tree in XPath Data Model. This node cannot occur
anywhere else cther than the root of the tree. All other nodes are always occurring in the Root node.

O Element node—Represents an element in the source XML document. An Element node may contain
an ordered list of child Element nodes. The ordered list is useful when we want to access nodes
according to their positions. ’

O Atiributes node —Represents an attribute in the source XML file. The parent node of Attribute node
is Element node '

O Namespaces node—Represents a namespace that is in scope on the element in the source XML
document represented by the parent Element node of the namespace node.

O Processing-instruction node — Represents a processing-instruction in the source ¥ML decument.

0 Comment node--Represents a comment in the XML document.

O Text node—Represents the text content of an element.

1105

Chapter 27

Q12
Ans.

Q13.

Q4.
Ans,

Q15.
Ans.

Q16.

1106

~ s

What are node set functions of XPath?

XPath provides various functions that allow us to access a selection from the node set and return another
node set. These functions are called as node set functions. Node set functions are generally used with
those path expressions, which use predicates. Some examples of node set functions are: count(), last(),
local-name(), name(), and namespace-uri(},

What is lang() function in XPath?

The lang () function is used to test the language of the context node. It takes one argument of language,
which is compared with the language that is determined by the relevant xm1 : 1ang attribute.

What is JAPX?

JAPX is acronym of [ava API for XML Processing, which is a high-level AP] for writing vendor neutral
applications that process XML. JAXP is used to process XML data by using applications built on the Java
platform. JAXP provides an extra layer of adaptor around the vendor-specific parser and transformer
implementations. With JAXP API, you can choose either Simple API for XML Parsing (SAX) parser or
Dacument Object Model {DOM) parser to parse an XML document using a stream of events or using
DOM object representation.

JAXP also supports the Extensible Stylesheet Language Transformations (XSLT) standard, which enabiles
you to control the presentation of the data, and convert the data to other XML documents or other
formats, for instance HTML. It also provides namespace support, which allows you to work with DTDs
that might otherwise have naming conflicts.

What is XML Namespace?

An XML namespace enables you to differentiate elements and attributes of different XML document
types from each other when combining them together into other documents, or even when processing
multiple documents simultaneously. It is not necessary that every XML document have namespaces.
Namespaces are optienal components of basic XML documents. However, namespace declarations are
recommended if your XML document is going to be shared with other XML documents that may share
the same element names. Note that newer XML-based technologies, such as XML Schemas, SOAP, and
WSDL, make heavy use of XML namespaces to identify data encoding types and important elements of
their structure.

What is CDATA?

An XML parser parses the text data of an XML document. Parsed Character Data (PCDATA) is the term
that is used for text data, which is normally parsed by an XML parser. However, Character Data
(CDATA) is the term that is used for that text data, which is not parsed by the XML parser. For example,
the characters, < and & are illegal in XML elements. This is because; the < character is interpreted by
parser as the start of a new element; and the & character is interpreted as the start of a character entity.
Therefore, a CDATA section is used in an XML document, which contains the data that could not be
parsed by the parser. The syntax to use the CDATA is

COATAL - . o Bk

Note that a CDATA section cannot contain the J]> string, and not nested CIYATA sections.

CREATING AJAX APPLICATIONS

